Bài 2: Căn thức bậc hai và hằng đẳng thức căn bậc hai của bình phương

DT

\(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=\sqrt{1+2005^2+\dfrac{2005^2}{2006^2}+\dfrac{2005}{2006}}\)

UK
13 tháng 9 2017 lúc 18:15

Sửa đề:

\(VP=\sqrt{1+2005^2+\dfrac{2005^2}{2006^2}}+\dfrac{2005}{2006}\)

Ta có: \(2005^2+1=\left(2005+1\right)^2-2.2005.1=2006^2-2.2005\)

\(\Rightarrow VP=\sqrt{2006^2-2.2005+\dfrac{2005^2}{2006^2}}+\dfrac{2005}{2006}\)

\(=\sqrt{\left(2006-\dfrac{2005}{2006}\right)^2}+\dfrac{2005}{2006}\)

\(=2006-\dfrac{2005}{2006}+\dfrac{2005}{2006}=2006\)

Phương trình đã cho tương đương

\(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=2006\)

\(\Leftrightarrow\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}=2006\)

\(\Leftrightarrow\left|x-1\right|+\left|x-2\right|=2006\)

Đến đây thì tự xét trường hợp và giải tìm nghiệm, bài này không cần điều kiện nhé

Bình luận (0)

Các câu hỏi tương tự
ND
Xem chi tiết
PN
Xem chi tiết
LL
Xem chi tiết
H24
Xem chi tiết
NN
Xem chi tiết
LT
Xem chi tiết
YS
Xem chi tiết
H24
Xem chi tiết
NL
Xem chi tiết