rút gọn:
\(A=\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)
Rút gọn: \(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)
\(=\sqrt{13+30\sqrt{2+2\sqrt{2}+1}}\)
\(=\sqrt{13+30\left(\sqrt{2}+1\right)}=\sqrt{43+30\sqrt{2}}\)
\(=\sqrt{43+2\cdot\sqrt{450}}\)
\(=\sqrt{25+2\cdot5\cdot3\sqrt{2}+18}\)
\(=\sqrt{\left(5+3\sqrt{2}\right)^2}=5+3\sqrt{2}\)
Rút gọn: \(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)
\(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)
= \(\sqrt{13+30\sqrt{2+\sqrt{\left(1+2\sqrt{2}\right)^2}}}\)= \(\sqrt{13+30\sqrt{\left(1+\sqrt{2}\right)^2}}\)
= \(\sqrt{43\:+30\sqrt{2}}\) = \(\sqrt{(25+2×5×3\sqrt{2}+18}\) = \(5\:+3\sqrt{2}\)
Rút gọn biểu thức \(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)
\(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)=\(\sqrt{13+30\sqrt{2+\sqrt{\left(\sqrt{8}+1\right)^2}}}\)
=\(\sqrt{13+30\sqrt{2+\sqrt{8}+1}}\)=\(\sqrt{13+30\sqrt{\left(\sqrt{2}+1\right)^2}}\)=\(\sqrt{13+30\sqrt{2}+30}\)
=\(\sqrt{43+30\sqrt{2}}\)=\(\sqrt{\left(5+3\sqrt{2}\right)^2}\)=\(5+3\sqrt{2}\)
Rút gọn: \(\sqrt{13+30\sqrt{2+9+4\sqrt{2}}}\)
Rút gọn \(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)
\(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}=\sqrt{13+30\sqrt{2+\sqrt{\left(1+2\sqrt{2}\right)^2}}}\)
\(=\sqrt{13+30\sqrt{2+1+2\sqrt{2}}}=\sqrt{13+30\sqrt{\left(1+\sqrt{2}\right)^2}}\)
\(=\sqrt{13+30\left(1+\sqrt{2}\right)}=\sqrt{43+30\sqrt{2}}=\sqrt{\left(5+3\sqrt{2}\right)^2}\backslash=5+3\sqrt{2}\)
Rút gọn biểu thức
\(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)
\(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}.\)
\(=\sqrt{13+30\sqrt{2+\sqrt{\left(2\sqrt{2}\right)^2+2.2\sqrt{2}+1}}}\)
\(=\sqrt{13+30\sqrt{2+\sqrt{\left(2\sqrt{2}+1\right)^2}}}\)
\(=\sqrt{13+30\sqrt{2+2\sqrt{2}+1}}\)
\(=\sqrt{13+30\sqrt{\left(\sqrt{2}+1\right)^2}}\)
\(=\sqrt{13+30\left(\sqrt{2}+1\right)}\)
\(=\sqrt{13+30\sqrt{2}+30}=\sqrt{43+30\sqrt{2}}\)
Ban vào link này nhé
https://share.icloud.com/photos/0T69uRlJ3wsY5qzsay_zH0wQA
rút gọn
\(\sqrt{29+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}+5\sqrt{2}\)
Ta có: \(\sqrt{29+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}+5\sqrt{2}\)
\(=\sqrt{29+30\sqrt{2+\sqrt{8+2\cdot2\sqrt{2}\cdot1+1}}}+5\sqrt{2}\)
\(=\sqrt{29+30\sqrt{2+\sqrt{\left(2\sqrt{2}+1\right)^2}}}+5\sqrt{2}\)
\(=\sqrt{29+30\sqrt{2+2\sqrt{2}+1}}+5\sqrt{2}\)
\(=\sqrt{29+30\sqrt{2+2\sqrt{2}\cdot1+1}}+5\sqrt{2}\)
\(=\sqrt{29+30\sqrt{\left(\sqrt{2}+1\right)^2}}+5\sqrt{2}\)
\(=\sqrt{29+30\left(\sqrt{2}+1\right)}+5\sqrt{2}\)
\(=\sqrt{29+30\sqrt{2}+30}+5\sqrt{2}\)
\(=\sqrt{9+2\cdot3\cdot5\sqrt{2}+50}+5\sqrt{2}\)
\(=\sqrt{\left(3+5\sqrt{2}\right)^2}+5\sqrt{2}\)
\(=3+5\sqrt{2}+5\sqrt{2}=3+10\sqrt{2}\)
rút gọn
a, \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
b\(\sqrt{3+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)
thankyou các bạn trước
\(a,=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\) \(=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{20-2.3\sqrt{20}+9}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(\sqrt{20}-3\right)^2}}}\)\(=\sqrt{\sqrt{5}-\sqrt{6-\sqrt{20}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{5-2\sqrt{5}+1}}=\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}=\sqrt{\sqrt{5}-\sqrt{5}+1}\)
\(=\sqrt{1}=1\)
\(b,=\sqrt{3+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\) \(=\sqrt{3+30\sqrt{2+\sqrt{8+2\sqrt{8}+1}}}\)
\(=\sqrt{3+30\sqrt{2+\sqrt{\left(\sqrt{8}+1\right)^2}}}\)\(=\sqrt{3+30\sqrt{3+\sqrt{8}}}=\sqrt{3+30\sqrt{2+2\sqrt{2}+1}}\)
\(=\sqrt{3+30\sqrt{\left(\sqrt{2}+1\right)^2}}=\sqrt{3+30\sqrt{2}+30}=\sqrt{33+30\sqrt{2}}\)
a) Ta có: \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{3-\left(2\sqrt{5}-3\right)}}\)
\(=\sqrt{\sqrt{5}-\sqrt{3-2\sqrt{5}+3}}\)
\(=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{5}+1}\)
=1
b) Ta có: \(\sqrt{3+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)
\(=\sqrt{3+30\sqrt{2+2\sqrt{2}+1}}\)
\(=\sqrt{3+30\left(\sqrt{2}+1\right)}\)
\(=\sqrt{33+30\sqrt{2}}\)
Rút gọn:
a) \(\frac{a-b}{\sqrt{a}-\sqrt{b}}\) với (a, b >0; a khác b)
b) \(\sqrt{4+\sqrt{7+4\sqrt{3}}}\)
c) \(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)
\(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)\(\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}\)\(\sqrt{20}-\sqrt{45}+3\sqrt{18}+\sqrt{72}\) Rút gọn biểu thức:a)\(\sqrt{4.36}+\sqrt{\frac{25}{81}\frac{16}{49}}\)