Bài 2: Căn thức bậc hai và hằng đẳng thức căn bậc hai của bình phương

NP

rút gọn 

a, \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)

b\(\sqrt{3+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)

thankyou các bạn trước

NL
27 tháng 6 2021 lúc 9:09

\(a,=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\) \(=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{20-2.3\sqrt{20}+9}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(\sqrt{20}-3\right)^2}}}\)\(=\sqrt{\sqrt{5}-\sqrt{6-\sqrt{20}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{5-2\sqrt{5}+1}}=\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}=\sqrt{\sqrt{5}-\sqrt{5}+1}\)

\(=\sqrt{1}=1\)

\(b,=\sqrt{3+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\) \(=\sqrt{3+30\sqrt{2+\sqrt{8+2\sqrt{8}+1}}}\)

\(=\sqrt{3+30\sqrt{2+\sqrt{\left(\sqrt{8}+1\right)^2}}}\)\(=\sqrt{3+30\sqrt{3+\sqrt{8}}}=\sqrt{3+30\sqrt{2+2\sqrt{2}+1}}\)

\(=\sqrt{3+30\sqrt{\left(\sqrt{2}+1\right)^2}}=\sqrt{3+30\sqrt{2}+30}=\sqrt{33+30\sqrt{2}}\)

 

 

 

 

Bình luận (1)
NT
27 tháng 6 2021 lúc 9:09

a) Ta có: \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{3-\left(2\sqrt{5}-3\right)}}\)

\(=\sqrt{\sqrt{5}-\sqrt{3-2\sqrt{5}+3}}\)

\(=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{5}+1}\)

=1

b) Ta có: \(\sqrt{3+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)

\(=\sqrt{3+30\sqrt{2+2\sqrt{2}+1}}\)

\(=\sqrt{3+30\left(\sqrt{2}+1\right)}\)

\(=\sqrt{33+30\sqrt{2}}\)

Bình luận (1)

Các câu hỏi tương tự
HT
Xem chi tiết
AS
Xem chi tiết
ND
Xem chi tiết
NV
Xem chi tiết
H24
Xem chi tiết
VD
Xem chi tiết
LT
Xem chi tiết
TN
Xem chi tiết
AD
Xem chi tiết