\(\left\{{}\begin{matrix}u_1=2\\u_1+...+u_n=n^2u_n\end{matrix}\right.\)
tìm lim n2un
Cho dãy số (\(u_n\)) xác định: \(\left\{{}\begin{matrix}u_1=5\\u_{n+1}=2u_n-3\end{matrix}\right.\).Tìm giới hạn lim(\(\dfrac{u_n}{2^n}\))
Tính lim Un , biết :
a) \(\left\{{}\begin{matrix}U_1=\sqrt{2}\\U_{n+1}=\sqrt{2+U_n}\end{matrix}\right.\) , n \(\ge\) 1
b) \(\left\{{}\begin{matrix}U_1=\dfrac{1}{2}\\U_{n+1}=\dfrac{1}{2-U_n}\end{matrix}\right.\) .
Hiện tại mới nghĩ được câu b thôi
b/ \(u_1=\dfrac{1}{2};u_2=\dfrac{1}{2-\dfrac{1}{2}}=\dfrac{2}{3};u_3=\dfrac{1}{2-\dfrac{2}{3}}=\dfrac{3}{4}...\)
Nhận thấy \(u_n=\dfrac{n}{n+1}\) , ta sẽ chứng minh bằng phương pháp quy nạp
\(n=k\Rightarrow u_k=\dfrac{k}{k+1}\)
Chứng minh cũng đúng với \(\forall n=k+1\)
\(\Rightarrow u_{k+1}=\dfrac{k+1}{k+2}\)
Ta có: \(u_{k+1}=\dfrac{1}{2-u_k}=\dfrac{1}{2-\dfrac{k}{k+1}}=\dfrac{k+1}{k+2}\)
Vậy biểu thức đúng với \(\forall n\in N\left(n\ne0\right)\)
\(\Rightarrow limu_n=lim\dfrac{n}{n+1}=lim\dfrac{1}{1+\dfrac{1}{n}}=1\)
\(\left\{{}\begin{matrix}u_1=0\\u_{n+1}=2u_n+\left(n+1\right).3^n\end{matrix}\right.\)
Tìm số hạng tổng quát \(\left(u_n\right)\)
\(\left\{{}\begin{matrix}u_1=1\\u_{n+1}=\dfrac{1}{3}\left(1+\dfrac{1}{u_n}\right)u_n\end{matrix}\right.\). gọi \(S_n=u_1+\dfrac{u_2}{2}+\dfrac{u_3}{3}+...+\dfrac{u_n}{n}\). tìm \(\lim\limits S_n\)
Cho dãy số \(\left(u_n\right)\)thỏa mãn: \(\left\{{}\begin{matrix}u_1=1\\u_{n+1}=\dfrac{2u_n}{u_n+4},n\ge1\end{matrix}\right.\)
Tìm công thức số hạng tổng quát của \(\left(u_n\right)\)
\(u_{n+1}=\dfrac{2u_n}{u_n+4}\Leftrightarrow\dfrac{1}{u_{n+1}}=\dfrac{1}{2}+\dfrac{2}{u_n}\)
Đặt \(v_n=\dfrac{1}{u_n}\Rightarrow\left\{{}\begin{matrix}v_1=1\\v_{n+1}=2v_n+\dfrac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}v_1=1\\v_{n+1}+\dfrac{1}{2}=2\left(v_n+\dfrac{1}{2}\right)\end{matrix}\right.\)
Đặt \(v_n+\dfrac{1}{2}=x_n\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{3}{2}\\x_{n+1}=2x_n\end{matrix}\right.\)
\(\Rightarrow x_n\) là CSN với công bội 2 \(\Rightarrow x_n=\dfrac{3}{2}.2^{n-1}=3.2^{n-2}\)
\(\Leftrightarrow v_n=x_n-\dfrac{1}{2}=3.2^{n-2}-\dfrac{1}{2}\)
\(\Rightarrow u_n=\dfrac{1}{v_n}=\dfrac{1}{3.2^{n-2}-\dfrac{1}{2}}=\dfrac{2}{3.2^{n-1}-1}\)
Cho \(\left\{{}\begin{matrix}u_1=1\\u_{n+1}=2u_n+6\end{matrix}\right.\)
Tìm số hạng tổng quát của dãy số sau
cho dãy số (un):\(\left\{{}\begin{matrix}u_1=3\\u_{n+1}=u_n^2-3u_n+4\end{matrix}\right.\)
Tìm lim\(\left(\dfrac{1}{u_1-1}+\dfrac{1}{u_2-1}+...+\dfrac{1}{u_n-1}\right)\)
Bạn tham khảo câu trả lời của anh Lâm
https://hoc24.vn/cau-hoi/.334447965337
Cho dãy un thỏa mản
\(\left\{{}\begin{matrix}u_1=1\\u_{n+1}=\dfrac{2u_n}{u_n+4}\end{matrix}\right.\) Với mọi n > bằng 1. Tìm CT SHTQ
Xét \(\dfrac{1}{u_{n+1}}=\dfrac{u_n+4}{2u_n}=\dfrac{1}{2}\left(1+\dfrac{4}{u_n}\right)\) (1)
Đặt \(\dfrac{1}{u_n}=x_n\)
(1) <=> \(x_{n+1}=\dfrac{1}{2}\left(4x_n+1\right)=2x_n+\dfrac{1}{2}\)
<=> \(x_{n+1}+\dfrac{1}{2}=2\left(x_n+\dfrac{1}{2}\right)\) (2)
Đặt \(x_n+\dfrac{1}{2}=t_n\)
(2) <=> tn+1 = 2.tn => q = 2
Có: \(t_n=t_1.2^{n-1}\)
Mà \(t_1=x_1+\dfrac{1}{2}=\dfrac{1}{u_1}+\dfrac{1}{2}=\dfrac{3}{2}\)
=> \(t_n=\dfrac{3}{2}.2^{n-1}\)
=> \(x_n=\dfrac{3}{2}.2^{n-1}-\dfrac{1}{2}\)
=> \(u_n=\dfrac{2}{3.2^{n-1}-1}\)
Bài 1: Cho dãy (Un): \(\left\{{}\begin{matrix}U_1=1\\U_{n+1}=2U_n+3\end{matrix}\right.\)
a) Tìm: U5
b) Tìm số hạng tổng quát của dãy (Un)
Bài 2: Xét tính tăng, giảm
a) \(U_n=\dfrac{\sqrt{n+1}-\sqrt{n}}{n}\)
b) \(\left(U_n\right):\left\{{}\begin{matrix}U_n=3\\U_{n+1}=\sqrt{1+U_n^2}\end{matrix}\right.\)
Bài 3: Tìm a để (Un): \(U_n=\dfrac{an+2}{n+1}\) là dãy tăng
Bài 4: Xét tính bị chặn:
a) \(U_n=\dfrac{n^2+1}{2n^2-3}\)
b) \(U_n=\dfrac{n-1}{\sqrt{n^2+1}}\)
Bài 5: Cho dãy: \(\left\{{}\begin{matrix}U_1=\sqrt{2}\\U_n+1=\sqrt{U_n+2}\end{matrix}\right.\), (Un)
Chứng minh rằng: (U1) tăng, bị chặn trên bởi 2
1:
a: \(u_2=2\cdot1+3=5;u_3=2\cdot5+3=13;u_4=2\cdot13+3=29;\)
\(u_5=2\cdot29+3=61\)
b: \(u_2=u_1+2^2\)
\(u_3=u_2+2^3\)
\(u_4=u_3+2^4\)
\(u_5=u_4+2^5\)
Do đó: \(u_n=u_{n-1}+2^n\)
\(\left\{{}\begin{matrix}u_1=1\\u_{n+1}=\dfrac{u_n^{2016}}{2015}+u_n\end{matrix}\right.\). Tính \(s=lim\left(\dfrac{u_1^{2015}}{u_2}+\dfrac{u_2^{2015}}{u_3}+...+\dfrac{u_n^{2015}}{u_{n+1}}\right)\)