Hình như: \(n^2u_n=\dfrac{2.2^2.3^2...n^2}{\left(2^2-1\right)\left(3^2-1\right)...\left(n^2-1\right)}\)
Hình như: \(n^2u_n=\dfrac{2.2^2.3^2...n^2}{\left(2^2-1\right)\left(3^2-1\right)...\left(n^2-1\right)}\)
Tính lim Un , biết :
a) \(\left\{{}\begin{matrix}U_1=\sqrt{2}\\U_{n+1}=\sqrt{2+U_n}\end{matrix}\right.\) , n \(\ge\) 1
b) \(\left\{{}\begin{matrix}U_1=\dfrac{1}{2}\\U_{n+1}=\dfrac{1}{2-U_n}\end{matrix}\right.\) .
\(\left\{{}\begin{matrix}u_1=1\\u_{n+1}=\dfrac{u_n^{2016}}{2015}+u_n\end{matrix}\right.\). Tính \(s=lim\left(\dfrac{u_1^{2015}}{u_2}+\dfrac{u_2^{2015}}{u_3}+...+\dfrac{u_n^{2015}}{u_{n+1}}\right)\)
Cho dãy số \(\left(u_n\right)\) thỏa mãn\(\left\{{}\begin{matrix}u_1=1\\u_{n+1}=\dfrac{2}{3}u_n+4,\forall n\in N,n\ge1\end{matrix}\right.\)
Tìm \(\lim\limits u_n\)
\(\left\{{}\begin{matrix}u_1=2\\u_n=\dfrac{u_1+2u_2+3u_3+...+\left(n-1\right)u_{n-1}}{n\left(n^2-1\right)}\end{matrix}\right.\).tìm \(\left(u_n\right)\)
Cho số thực a khác 0 và dãy số \(\left(u_n\right)_{\left(n\ge1\right)}\) xác định bởi \(\left\{{}\begin{matrix}u_1=a\\2u_{n+1}=u_n+\dfrac{4\left(n+1\right)}{nu_n}\end{matrix}\right.\)
Tìm lim \(u_n\)
\(\left\{{}\begin{matrix}u_1=\dfrac{1}{2};u_2=3\\u_{n+2}=\dfrac{u_{n+1}.u_n+1}{u_{n+1}+u_n}\end{matrix}\right.\). tìm \(\left(u_n\right)\)
\(\left\{{}\begin{matrix}u_1=2\\u_{n+1}=\dfrac{u_n^2+2016u_n}{2017}\end{matrix}\right.\). Tính \(limS;S=\dfrac{u_1}{u_2-1}+\dfrac{u_2}{u_3-1}+...+\dfrac{u_n}{u_{n+1}-1}\)
Tìm giới hạn của dãy (un), với
\(\left\{{}\begin{matrix}u_1=1\\u_{n+1}=\sqrt{u_n^3+2}\end{matrix}\right.\)
tìm lim un , biết un \(\left\{{}\begin{matrix}u_1=2\\u_{n+1}=\frac{u_n+1}{2}\end{matrix}\right.\)với n=1,2,3