\(\begin{cases}x^3-3x^2+9x+22=y^3+3y^2-9y\\x^2+y^2-x+y=\frac{1}{2}\end{cases}\)
mấy bạn giúp mình câu này với!!!
\(\begin{cases}x^3-3x^2-9x+22=y^3+3y^2-9y\\x^2+y^2-x+y=\frac{1}{2}\end{cases}\)
GIẢI HỆ \(\hept{\begin{cases}x^3-3x^2\\2x^2+2y^2-2x+2y=1\end{cases}-9x+22=y^3+3y^2-9y}\)
Giải các hệ phương trình sau:
1) \(\begin{cases} x + 2y = 5\\ x^2 + 2y^2 - 2xy = 5 \end{cases}\)
2) \(\begin{cases} 4x+4y-5=0\\ (x+1)^2+(y-3)^2=1 \end{cases}\)
3) \(\begin{cases} a^2+(b-2)^2=b^2\\ a^2+(b-1)^2=1 \end{cases}\)
4) \(\begin{cases} ab-5a-2b+8=0\\ a^2-4a=b^2-10b+24 \end{cases}\)
5) \(\begin{cases} xy+x-2=0\\ 2x^3-x^2y+x^2+y^2-2xy-y=0 \end{cases}\)
6) \(\begin{cases} x+y=1-2xy\\ x^2+y^2=1 \end{cases}\)
7) \(\begin{cases} x+y+{1\over x}+{1\over y}=5\\ x^2+y^2+{1\over x^2}+{1\over y^2}=9 \end{cases}\)
8) \(\begin{cases} x^2+y^2-x+y=2\\ xy+x-y=-1 \end{cases}\)
9) \(\begin{cases} x^3-3x^2+9x+22=y^3+3y^2-9y\\ x^2+y^2-x+y={1\over 2} \end{cases}\)
10) \(\begin{cases} x^2-4x=3y\\ y^2-4y=3x \end{cases}\)
giải hệ phương trình
a,\(\hept{\begin{cases}2x^2+xy=3x\\2y^2+xy=3y\end{cases}}\)b,\(\hept{\begin{cases}y^2=x^3-3x^2+2x\\x^2=y^3-3y^2+2y\end{cases}}\)
c,\(\hept{\begin{cases}3x+y=\frac{1}{x^2}\\3y+x=\frac{1}{y^2}\end{cases}}\)
d,\(\hept{\begin{cases}3y=\frac{y^2+2}{x^2}\\3x=\frac{x^2+2}{y^2}\end{cases}}\)
Nói nghe có vẻ dễ ha Trần Hữu Ngọc Minh
Thật là trừ cho nhau không ạ bạn phải tìm x và y vì đây là một bài phương trình
\(\begin{cases}\sqrt{9y-2}+\sqrt[3]{7x+2y+2}=2y+3\\x+3y+1=y^2-\frac{1}{y}+\frac{3x+4}{\sqrt{x+1}}\end{cases}\)
ĐKXĐ: \(x>-1;y\ge\frac{2}{9}\)
(2) \(\Leftrightarrow\left(x+1\right)-3\sqrt{x+1}-\frac{1}{\sqrt{x+1}}=y^2-3y-\frac{1}{y}\)
Xét \(f\left(t\right)=t^2-3t-\frac{1}{t};t>0\)
\(f'\left(t\right)=2t-3+\frac{1}{t^2}=\frac{2t^3-3t^2+1}{t^2}=\frac{\left(t-1\right)^2\left(2t+1\right)}{t^2}>0;\forall t>0\)
→ f(t) đồng biến trên (0;+∞)
Mà \(f\left(\sqrt{x+1}\right)=f\left(y\right)\Leftrightarrow\sqrt{x+1}=y\Leftrightarrow x=y^2-1\)
thế vào (1) ta được
\(\sqrt{9y-2}+\sqrt[3]{7y^2+2y-5}=2y+3\)
\(\Leftrightarrow\sqrt{9y-2}-\left(y+2\right)+\sqrt[3]{7y^2+2y-5}-\left(y+1\right)=0\)
\(\Leftrightarrow\frac{y^2-5y+6}{\sqrt{9y-2}+y+2}+\frac{y^3-4y^2+y+6}{\sqrt[3]{\left(7y^2+2y-5\right)^2}+\left(y+1\right)\sqrt[3]{7y^2+2y-5}+\left(y+1\right)^2}=0\)
\(\Leftrightarrow\left(y^2-5y+6\right)\left(\frac{1}{\sqrt{9y-2}+y+2}+\frac{y+1}{\sqrt[3]{\left(7y^2+2y-5\right)^2}+\left(y+1\right)\sqrt[3]{7y^2+2y-5}+\left(y+1\right)^2}\right)=0\)
\(\Leftrightarrow y^2-5y+6=0\Leftrightarrow\left[\begin{array}{nghiempt}y=2\Rightarrow x=3\\y=3\Rightarrow x=8\end{array}\right.\)
Vậy hệ đã cho có hai nghiệm (8;3) và (3;2)
\(\begin{cases}2\sqrt{x^2+3x+2}-\sqrt{x+1}=2y\sqrt{y^2+1}+9-y-6y^2\\\sqrt{x^2+3x+2}+3\sqrt{x+1}=y\sqrt{y^2+1}-6+3y+4y^2\end{cases}\)
\(\begin{cases}x^2-y-1=2\sqrt{2x-1}\\y^3-8x^3+3y^2+4y-2x+2=0\end{cases}\)
\(\begin{cases}\left(x+\sqrt{x^2+4}\right)\left(y+\sqrt{y^2+1}\right)=2\\27x^6=x^3+4x+2\end{cases}\)
\(\begin{cases}x-\sqrt{3y-2}=\sqrt{9y^2-6y}-x\sqrt{x^2+2}\\x+y+\sqrt{y+3}=4\end{cases}\)
2)ĐK:x\(\ge\frac{1}{2}\)
pt(2)\(\Leftrightarrow\left(y+1\right)^3\)+(y+1)=\(\left(2x\right)^3\)+2x
Xét hàm số: f(t)=\(t^3\)+t
f'(t)=3\(t^2\)+1>0,\(\forall\)t
\(\Rightarrow\)hàm số liên tục và đồng biến trên R
\(\Rightarrow\)y+1=2x
Thay y=2x-1 vào pt(1) ta đc:
\(x^2\)-2x=2\(\sqrt{2x-1}\)
\(\Leftrightarrow\left(x^2-4x+2\right)\left(1+\frac{4}{2x-2+2\sqrt{2x-1}}\right)=0\)
\(\Leftrightarrow x^2\)-4x+2=0(do(...)>0)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=2+\sqrt{2}\Rightarrow y=3+2\sqrt{2}\\x=2-\sqrt{2}\Rightarrow y=3-2\sqrt{2}\end{array}\right.\)
4)ĐK:\(y\ge\frac{2}{3}\)
pt(1)\(\Leftrightarrow x-\sqrt{3y-2}=\sqrt{3y\left(3y-2\right)}-x\sqrt{x^2+2}\)
\(\Leftrightarrow x\left(\sqrt{x^2+2}+1\right)=\sqrt{3y-2}\left(\sqrt{3y}+1\right)\)
Xét hàm số:\(f\left(t\right)=t\left(\sqrt{t^2+2}+1\right)\)
\(\Rightarrow\)hàm số liên tục và đồng biến trên R
\(\Rightarrow x=\sqrt{3y-2}\)
Thay vào pt(2) ta đc:\(\sqrt{3y-2}+y+\sqrt{y+3}=4\)
\(\Leftrightarrow\sqrt{3y-2}-1+\sqrt{y+3}-2+y-1=0\)
\(\Leftrightarrow\left(y-1\right)\left(\frac{3}{\sqrt{3y-2}+1}+\frac{1}{\sqrt{y+3}+2}+1\right)=0\)
\(\Leftrightarrow y=1\Rightarrow x=1\)(do...)>0)
KL:...
giải hệ phương trình
a) \(\hept{\begin{cases}\frac{9x}{7}-\frac{2y}{3}=-28\\\frac{3x}{2}+\frac{12y}{5}=15\end{cases}}\)
b)\(\hept{\begin{cases}x+y=\frac{4x-3}{5}\\x+3y=\frac{15-9y}{14}\end{cases}}\)
\(a,hpt\Leftrightarrow\hept{\begin{cases}\frac{9x}{7}-\frac{2y}{3}=-28\\\frac{3x}{2}+\frac{12y}{5}=15\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}27x-14y=-588\\15x+24y=150\end{cases}\Leftrightarrow}\hept{\begin{cases}9x-\frac{14}{3}y=-196\\5x+8y=50\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}45x-\frac{70}{3}y=-980\\45x+72y=450\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{286}{3}y=1430\\45x+72y=450\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}y=15\\x=-14\end{cases}}\)
Giải các hệ phương trình sau :
a, \(\begin{cases}5x-4y=3\\7x-9y=8\end{cases}\)
b, \(\begin{cases}\frac{1}{x}-\frac{8}{y}=18\\\frac{5}{x}+\frac{4}{y}=51\end{cases}\)
c, \(\begin{cases}\frac{10}{x-1}+\frac{1}{y+2}=1\\\frac{25}{x-1}+\frac{3}{y+2}=2\end{cases}\)
d, \(\begin{cases}\frac{27}{2x-y}+\frac{32}{x+3y}=7\\\frac{45}{2x-y}-\frac{48}{x+3y}=-1\end{cases}\)
a: \(\Leftrightarrow\left\{{}\begin{matrix}35x-28y=21\\35x-45y=40\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}17y=-19\\5x-4y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{19}{17}\\x=-\dfrac{5}{17}\end{matrix}\right.\)
b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}-\dfrac{8}{y}=18\\\dfrac{10}{x}+\dfrac{8}{y}=102\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{11}{x}=120\\\dfrac{1}{x}-\dfrac{8}{y}=18\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{11}{120}\\y=-\dfrac{44}{39}\end{matrix}\right.\)
c: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{30}{x-1}+\dfrac{3}{y+2}=3\\\dfrac{25}{x-1}+\dfrac{3}{y+2}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{x-1}=1\\\dfrac{10}{y-1}+\dfrac{1}{y+2}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=5\\\dfrac{1}{y+2}+2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=6\\y=-3\end{matrix}\right.\)
d: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{135}{2x-y}+\dfrac{160}{x+3y}=35\\\dfrac{135}{2x-y}-\dfrac{144}{x+3y}=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+3y=8\\2x-y=9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+6y=16\\2x-y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=5\end{matrix}\right.\)
1)\(\begin{cases}x^2-y\left(x+y\right)+1=0\\\left(x^2+1\right)\left(x+y-2\right)+y=0\end{cases}\)
2)\(\begin{cases}x^2-4x+y^4+4y^2=2\\xy^2+2y^2+6x=23\end{cases}\)
3)\(\begin{cases}2x+\frac{1}{x+y}=3\\4x^2+4y^2+4xy+\frac{3}{\left(x+y\right)^2}=7\end{cases}\)
4)\(\begin{cases}y^6+x^9+3y^4+3y^2=8\\4y^2-3x^3y^2+x^3=2\end{cases}\)
5)\(\begin{cases}\sqrt{x+y}-2\sqrt{x-y}=1\\x+\sqrt{x^2+y^2}=8\end{cases}\)
6) \(\begin{cases}x+y-2=\frac{y}{x^2+1}\\x^2+y^2+xy=y-1\end{cases}\)
7) \(\begin{cases}4x-1=\sqrt{\left(2x+y\right).\left(2y+1\right)}\\\sqrt{x+2y+1}-\sqrt{x+y-1}=\sqrt{x-1}\end{cases}\)
8) \(\begin{cases}\left(x+y\right).\left(x+4y^2+y\right)+3y^4=0\\\sqrt{x+2y^2+1}-y^2+y+1=0\end{cases}\)
ôi trờiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii