GIẢI HỆ \(\hept{\begin{cases}x^3-3x^2\\2x^2+2y^2-2x+2y=1\end{cases}-9x+22=y^3+3y^2-9y}\)
giải hệ phương trình
a) \(\hept{\begin{cases}\frac{9x}{7}-\frac{2y}{3}=-28\\\frac{3x}{2}+\frac{12y}{5}=15\end{cases}}\)
b)\(\hept{\begin{cases}x+y=\frac{4x-3}{5}\\x+3y=\frac{15-9y}{14}\end{cases}}\)
Giải phương trình
\(\hept{\begin{cases}\frac{1}{x}+2\left(x+y\right)=3\\3x\left(x+y\right)-x=2\end{cases}}\)\(\hept{\begin{cases}\frac{x+y}{x-y}+\frac{2x}{y+1}=3\\\frac{x+y}{2\left(x-y\right)}-\frac{3x}{y+1}=\frac{-1}{2}\end{cases}}\)\(\hept{\begin{cases}2x+3y=xy+5\\\frac{1}{x}+\frac{1}{y+1}=1\end{cases}}\)Giải các hệ phương trình :
a ) \(\hept{\begin{cases}x^2-3y=2\\9y^2-8x=8\end{cases}}\)
b ) \(\hept{\begin{cases}xy+x+y=3\\\frac{1}{x^2+2x}+\frac{1}{y^2+2y}=\frac{2}{3}\end{cases}}\)
Giải hệ phương trình
\(\hept{\begin{cases}3x-4y=11\\5x-6y=20\end{cases}}\)
\(\hept{\begin{cases}\frac{2}{x}-\frac{3}{y}=1\\3x-3y=-2xy\end{cases}}\)
\(\hept{\begin{cases}2x-y=-3xy\\\frac{1}{x}+\frac{6}{y}=-1\end{cases}}\)
\(\hept{\begin{cases}\frac{3}{x+1}+\frac{1}{y+x-1}=2\\\frac{2}{x+1}-\frac{3}{y+x-1}=5\end{cases}}\)
Giải hệ phương trình: \(\hept{\begin{cases}27y^3-3x^2+9y=1\\\sqrt{x}+\sqrt{3y}=\sqrt[4]{72\left(\frac{x^2}{9}+y^2\right)}\end{cases}}\)
giải hệ phương trình:
a)\(\hept{\begin{cases}x^2+y^2+z^2=8\\xy+yz+xz=4\\x+y+z=4\end{cases}}\)
b)\(\hept{\begin{cases}x^4+x^3y+9y=y^3x+x^2y^2\\xy^3-x^4=7\end{cases}}\).
giải hpt:
1, \(\hept{\begin{cases}x^2+2y-4x=0\\4x^2-4xy^2+y^4-2y+4=0\end{cases}}\)
2. \(\hept{\begin{cases}x^3-y^3=9x+9y\\x^2-y^2=3\end{cases}}\)
Giải hệ phương trình:
1) \(\hept{\begin{cases}\sqrt[3]{x-y}=\sqrt{x-y}\\x+y=\sqrt{x+y+2}\end{cases}}\)
2) \(\hept{\begin{cases}x-\frac{1}{x}=y-\frac{1}{y}\\2y=x^3+1\end{cases}}\)
3) \(\hept{\begin{cases}\left(x-y\right)\left(x^2+y^2\right)=13\\\left(x+y\right)\left(x^2-y^2\right)=25\end{cases}\left(x;y\in R\right)}\)
4) \(\hept{\begin{cases}3y=\frac{y^2+2}{x^2}\\3x=\frac{x^2+2}{y^2}\end{cases}}\)
5) \(\hept{\begin{cases}x+y-\sqrt{xy}=3\\\sqrt{x+1}+\sqrt{y+1}=4\end{cases}\left(x;y\in R\right)}\)
6) \(\hept{\begin{cases}x^3-8x=y^3+2y\\x^2-3=3\left(y^2+1\right)\end{cases}\left(x;y\in R\right)}\)
7) \(\hept{\begin{cases}\left(x^2+1\right)+y\left(y+x\right)=4y\\\left(x^2+1\right)\left(y+x-2\right)=y\end{cases}\left(x;y\in R\right)}\)
8) \(\hept{\begin{cases}y+xy^2=6x^2\\1+x^2y^2=5x^2\end{cases}}\)