Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
KT
Xem chi tiết
KT
9 tháng 4 2023 lúc 10:29

αi nhanh mình sẽ Tick ạ.

Bình luận (0)
NH
9 tháng 4 2023 lúc 10:48

A = \(\dfrac{3^{100}.\left(-2\right)+3^{101}}{\left(-3\right)^{101}-3^{100}}\) 

A = \(\dfrac{3^{100}.\left(-2\right)+3^{100}.3}{\left(-3\right)^{100}.\left(-3\right)-3^{100}}\)

A = \(\dfrac{3^{100}.\left(-2+3\right)}{3^{100}.\left(-3\right)-3^{100}}\)

A = \(\dfrac{3^{100}.1}{3^{100}.\left(-3-1\right)}\)

A = \(\dfrac{3^{100}}{3^{100}}\) . \(\dfrac{1}{-4}\)

A = - \(\dfrac{1}{4}\)

Bình luận (0)
NV
9 tháng 4 2023 lúc 11:12

1/4

 

Bình luận (0)
TM
Xem chi tiết
TT
1 tháng 10 2015 lúc 11:34

trả lời câu c nha

A=3+3^2 +3^+...+3^99+3^100

3A=3^2+3^3+...+3^100+3^101

3A-A=2A=3^101-3

Do đó 2A+3=3^101.Theo đề bài,2A+3=3^x

Vậy x=101

 

^ là mụ nha

 

Bình luận (0)
TT
Xem chi tiết
KR
7 tháng 8 2023 lúc 23:12

`@` `\text {Ans}`

`\downarrow`

`A = 3 + 3^2 + ... + 3^99 + 3^100`

`=> 3A = 3^2 + 3^3 + ... + 3^100 + 3^101`

`=> 3A - A = (3^2 + 3^3 + ... + 3^100 + 3^101) - (3 + 3^2 + ... + 3^99 + 3^100)`

`=> 2A = 3^101 - 3`

`=> 2A + 3 = 3^101 + 3 - 3`

`=> 2A + 3 = 3^101`

Ta có:

`2A + 3 = 3^x`

`=> x = 101.`

Bình luận (0)
NT
7 tháng 8 2023 lúc 22:53

A=3+3^2+...+3^100

=>3*A=3^2+3^3+...+3^101

=>2A=3^101-3

=>2A+3=3^101

Theo đề, ta có: 3^x=3^101

=>x=101

Bình luận (0)
VH
Xem chi tiết
BN
3 tháng 10 2019 lúc 21:18

 Câu 1: Dân số thế giới tăng nhanh trong khoảng thời gian nào?

  a. Trước Công nguyên            b. Từ Công Nguyên- thế kỉ XI

  c. Từ thế kỉ XIX- thế kỉ XX         d. Từ thế kỉ XIX- nay

Chọn C

 Câu 2: Những năm 50 của thế kỉ XX bùng nổ dân số diễn ra ở

  a. Châu Âu, Á, Đại dương             b. Châu Á,Phi và Mĩ La Tinh

  c. Châu Mĩ, Đại dương, Phi.           d. Châu Mĩ La Tinh, Á, Âu

Chọn B

 

Bình luận (0)
H24
3 tháng 10 2019 lúc 21:33

b)

     B=1x2+2x3+3x4+...+99x100

  1/B=1/(1x2)+1/(2x3)+1/(3x4)+...+1/(99x100)

  1/B=1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+...+1/99-1/100

  1/B=1/1-1/100

  1/B=99/100

  vì 1/B=99/100=>99.B=100

                                  B=100/99

                             Vậy B=100/99

Bình luận (0)
XO
3 tháng 10 2019 lúc 21:37

a) Ta có : A = 3 + 32 + 33 + 34 + ... + 399 + 3100

                   = (3 + 32) + (33 + 34) + ... + (399 + 3100)

                   = (3 + 32) + 32.(3 + 32) + .... + 398.(3 + 32)

                   = 12 + 32.12 + .... + 398.12

                   = 12.(1 + 32 + ... + 398) (1)

                   = 3.4.(1 + 32 + ... + 398\(⋮\) 4 

=> \(A⋮4\)

Từ (1) \(\Rightarrow A⋮12\)

b) B = 1 x 2 + 2 x 3 + 3 x 4 + ... + 99 x 100

  3B = 1 x 2 x 3 + 2 x 3 x 3 + 3 x 4 x 3 + ... + 99 x 100 x 3

       = 1 x 2 x 3 + 2 x 3 x (4 - 1) + 3 x 4 x (5 - 2) + .... + 99 x 100 x (101 - 98)

       = 1 x 2 x 3 + 2 x 3 x 4 - 1 x 2 x 3 + 3 x 4 x 5 - 2 x 3 x 4 + .... + 99 x 100 x 101 - 98 x 99 x 100

       = 99 x 100 x 101 = 999 900

=> B = 333 300

c) Ta có : C = 12 + 22 + 32 + ... + 992 + 1002

                   = 1.1 + 2.2 + 3.3 + ... + 99.99 + 100.100

                   = 1.(2 - 1) + 2.(3 - 1) + 3.(4 - 1) + .... + 99.(100 - 1) + 100.(101 - 1)

                   = 1.2 - 1 + 2.3 - 2 + 3.4 - 3 + ... + 99.100 - 99 + 100.101 - 100

                   = (1.2 + 2.3 + 3.4 + ... + 99.100 + 100.101) - (1 + 2 + 3 + 4 + ... + 99 + 100)

Đặt B =  1.2 + 2.3 + 3.4 + ... + 99.100 + 100.101

=> 3B = 1.2.3 + 2.3.3 + 3.4.3 + ... + 99.100.3 + 100.101.3

           = 1.2.3 + 2.3(4 - 1) + 3.4.(5 - 2) + ... + 99.100.(101 - 98) + 100.101.(102 - 99)

           = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 99.100.101 - 98.99.100 + 100.101.102 - 99.100.101

           = 100.101.102

          = 1 030 200 

=> B = 343 400

Khi đó : C = B - (1 + 2 + 3 + 4 + ... + 99 + 100) 

                 = 343 400 - [(100 - 1) : 1 + 1] . (100 + 1) : 2

                 = 343 400 - 100 . 101 : 2

                 = 343 400 + 5050

                 = 348 450 

Vậy C = 348 500

Bình luận (0)
OO
Xem chi tiết
DH
7 tháng 5 2016 lúc 11:58

1. Ta có:

3A = 3^2 + 3^3+3^4+...+3^101

=> 3A-A= (3^2+3^3+3^4+...+3^101) - (3+3^2+3^3+...+3^100)

<=> 2A= 3^101-3

=> 2A +3 = 3^101

Mà 2A+3=3^n

=> 3^101 = 3^n => n=101

Bình luận (0)
NL
7 tháng 5 2016 lúc 14:18

2. M=3+32+33+34+...+3100

=>3M=32+33+34+35+...+3101

=>3M-M= 3101-3 ( chỗ này bạn tự làm được nhé) 

=>   M=\(\frac{3^{101}-3}{2}\)

a) Ta co : 3101=(34)25 .3=8125.3

Bạn học đồng dư thức rồi thì xem:

  Vì 81 đồng dư với 1 (mod 8) => 8125 đồng dư với 1 (mod 8)=> 8125.3 đồng dư với 1.3=3(mod 8)

=> 8125.3-3 đồng dư với 3-3=0 (mod 8)=> 8125.3-3 chia hết cho 8

=>\(\frac{81^{25}.3-3}{2}\)chia hết cho 4=> M chia hết cho 4 (1)

Ma M=3101-3 chia hết cho 3                              (2)

Từ (1) và (2) => M chia hết cho 12

b)\(2\left(\frac{3^{101}-3}{2}\right)+3=3^n\)

=> 3101-3 +3 =3n

=> 3101=3n=> n = 101

     

                                   

Bình luận (0)
TT
15 tháng 4 2018 lúc 21:19

Nguyễn Duy Long sai rồi

phải thêm là:Mặt khác 12=3.4 và 3 và 4 là hai số nguyên tố cùng nhau (3)

Từ (1);(2) và (3) suy ra M chia hết cho 12

NHỚ TK MÌNH NHA ĐẢM BẢO ĐÚNG 100% LUÔN ĐÓ

Bình luận (0)
NH
Xem chi tiết
LD
4 tháng 11 2015 lúc 21:43

suy ra 3.A=3^2+...+3^101

3A-A=(3^2+...+3^101)-(3+...+3^100)

2A=3^101-3

A=(3^101-3):2

2A+3=(3^101-3):2.2+3

          =3^101-3+3

          =3^101

3^x=3^101

Vậy x =101 

Bình luận (0)
NP
Xem chi tiết
NT
27 tháng 3 2020 lúc 19:19

a) \(\left(x-2\right)^2+2019\)

Ta có: \(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-2\right)^2+2019\ge2019\forall x\)

Dấu '=' xảy ra khi

\(\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Vậy: Giá trị nhỏ nhất của biểu thức \(\left(x-2\right)^2+2019\) là 2019 khi x=2

b) \(\left(x-3\right)^2+\left(y-2\right)^2-2018\)

Ta có: \(\left(x-3\right)^2\ge0\forall x\)

\(\left(y-2\right)^2\ge0\forall y\)

Do đó: \(\left(x-3\right)^2+\left(y-2\right)^2\ge0\forall x,y\)

\(\Rightarrow\left(x-3\right)^2+\left(y-2\right)^2-2018\ge-2018\forall x,y\)

Dấu '=' xảy ra khi

\(\left\{{}\begin{matrix}\left(x-3\right)^2=0\\\left(y-2\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)

Vậy: Giá trị nhỏ nhất của biểu thức \(\left(x-3\right)^2+\left(y-2\right)^2-2018\) là -2018 khi x=3 và y=2

c) \(-\left(3-x\right)^{100}-3\cdot\left(y+2\right)^{200}+2020\)

Ta có: \(\left(3-x\right)^{100}\ge0\forall x\)

\(\Rightarrow-\left(3-x\right)^{100}\le0\forall x\)

Ta có: \(\left(y+2\right)^{200}\ge0\forall y\)

\(\Rightarrow-3\cdot\left(y+2\right)^{200}\le0\forall y\)

Do đó: \(-\left(3-x\right)^{100}-3\left(y+2\right)^{200}\le0\forall x,y\)

\(\Rightarrow-\left(3-x\right)^{100}-3\left(y+2\right)^{200}+2020\le2020\forall x,y\)

Dấu '=' xảy ra khi

\(\left\{{}\begin{matrix}\left(3-x\right)^{100}=0\\\left(y+2\right)^{200}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3-x=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-2\end{matrix}\right.\)

Vậy: Giá trị lớn nhất của biểu thức \(-\left(3-x\right)^{100}-3\cdot\left(y+2\right)^{200}+2020\) là 2020 khi x=3 và y=-2

d) \(-\left|x-1\right|-2\left(2y-1\right)^2+100\)

Ta có: \(\left|x-1\right|\ge0\forall x\)

\(\Rightarrow-\left|x-1\right|\le0\forall x\)

Ta có: \(\left(2y-1\right)^2\ge0\forall y\)

\(\Rightarrow-2\left(2y-1\right)^2\le0\forall y\)

Do đó: \(-\left|x-1\right|-2\left(2y-1\right)^2\le0\forall x,y\)

\(\Rightarrow-\left|x-1\right|-2\left(2y-1\right)^2+100\le100\forall x,y\)

Dấu '=' xảy ra khi

\(\left\{{}\begin{matrix}\left|x-1\right|=0\\\left(2y-1\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\2y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\frac{1}{2}\end{matrix}\right.\)

Vậy: Giá trị lớn nhất của biểu thức \(-\left|x-1\right|-2\left(2y-1\right)^2+100\) là 100 khi x=1 và \(y=\frac{1}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
EO
Xem chi tiết
NL
7 tháng 1 2021 lúc 17:07

\(x=\dfrac{1}{\sqrt{2}}\left(\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}\right)\)

\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}\right)=\sqrt{6}\)

\(y=\sqrt{\left(\sqrt{6}-1\right)^2}=\sqrt{6}-1\)

\(\Rightarrow x-y=1\Rightarrow P=1\)

\(B=x-2020-\sqrt{x-2020}+\dfrac{1}{4}+\dfrac{8079}{4}\)

\(B=\left(\sqrt{x-2020}-\dfrac{1}{2}\right)^2+\dfrac{8079}{4}\ge\dfrac{8079}{4}\)

\(B_{min}=\dfrac{8079}{4}\) khi \(x=\dfrac{8081}{4}\)

Bình luận (0)
H24
Xem chi tiết
NT
23 tháng 3 2021 lúc 21:47

Bài 1: 

b) ĐKXĐ: \(x\ne3\)

Ta có: \(\dfrac{3-x}{20}=\dfrac{-5}{x-3}\)

\(\Leftrightarrow\dfrac{x-3}{-20}=\dfrac{-5}{x-3}\)

\(\Leftrightarrow\left(x-3\right)^2=100\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=10\\x-3=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=13\left(nhận\right)\\x=-7\left(nhận\right)\end{matrix}\right.\)

Vậy: \(x\in\left\{13;-7\right\}\)

Bình luận (0)