tính
\(sin\alpha\times cos\alpha\) .Biết \(tg\alpha+cotg\alpha=3\)
Bài 1: Tìm Sin \(\alpha\), Cos \(\alpha\) , biết Tg \(\alpha\) = \(\dfrac{3}{4};cotg\alpha=\dfrac{5}{12}\)
Bài 2 : Cho Sin \(\alpha\) = \(\dfrac{7}{25}\) . Tìm Cos \(\alpha\) , Tg \(\alpha\) và Cotg \(\alpha\)
Bài 2:
\(\cos a=\sqrt{1-\left(\dfrac{7}{25}\right)^2}=\dfrac{24}{25}\)
\(\tan a=\dfrac{7}{25}:\dfrac{24}{25}=\dfrac{7}{24}\)
\(\cot a=\dfrac{24}{7}\)
Cho \(\cos\alpha=\dfrac{3}{4}\). Hãy tìm \(\sin\alpha,tg\alpha,cotg\alpha;\left(0^0< \alpha< 90^0\right)\) ?
giúp mình với.Mai phải nộp rồi
Dựng góc nhọn alpha biết
A)sin alpha=0.5
B)cos alpha=0.8
C)tg alpha=3
D)cotg a;ph=2
Dựng góc nhọn α,biết a) sin α = \(\frac{2}{3}\) b) cos α = 0,6 c) tg α =\(\frac{3}{4}\) d) cotg =\(\frac{3}{2}\)
1/ Cho \(\sin\alpha=0,28.\)Tính \(\cos\alpha\), tg\(\alpha\), cotg\(\alpha\)
2/ Cho góc nhọn \(\alpha\). chứng minh rằng: \(1-2\cos^2\alpha=\sin^4\alpha-\cos^4\alpha\)
Câu 1:
\(\cos a=\sqrt{1-0.28^2}=\dfrac{24}{25}\)
\(\tan a=\dfrac{0.28}{0.96}=\dfrac{7}{24}\)
\(\cot a=\dfrac{1}{\tan a}=\dfrac{24}{7}\)
Cho \(\sin\alpha=\dfrac{1}{2}\). Hãy tìm \(\cos\alpha,tg\alpha,cotg\alpha;\left(0^0< \alpha< 90^0\right)\) ?
Cho \(\tan\alpha=\dfrac{3}{5}\). Tính giá trị của các biểu thức sau:
M=\(\dfrac{\sin\alpha+\cos\alpha}{\sin\alpha-\cos\alpha}\)
N=\(\dfrac{\sin\alpha\times\cos\alpha}{\sin^2\alpha-\cos^2\alpha}\)
Lời giải:
\(M=\frac{\frac{\sin a}{\cos a}+1}{\frac{\sin a}{\cos a}-1}=\frac{\tan a+1}{\tan a-1}=\frac{\frac{3}{5}+1}{\frac{3}{5}-1}=-4\)
\(N = \frac{\frac{\sin a\cos a}{\cos ^2a}}{\frac{\sin ^2a-\cos ^2a}{\cos ^2a}}=\frac{\frac{\sin a}{\cos a}}{(\frac{\sin a}{\cos a})^2-1}=\frac{\tan a}{\tan ^2a-1}=\frac{\frac{3}{5}}{\frac{3^2}{5^2}-1}=\frac{-15}{16}\)
Biết Sin\(\alpha\) = \(\frac{5}{13}\) , tính Cos\(\alpha\) , tg\(\alpha\) , cotg\(\alpha\)
Giả sử góc đã cho là nhọn
\(cosa=\sqrt{1-sin^2a}=\sqrt{1-\frac{25}{169}}=\frac{12}{13}\)
\(tana=\frac{sina}{cosa}=\frac{5}{12}\)
\(cota=\frac{1}{tana}=\frac{12}{5}\)
sin\(\alpha\)=3cos\(\alpha\). tinh A=sin\(\alpha\).cos\(\alpha\)+\(\dfrac{tg^2\alpha}{9}\)+9 cotg2\(\alpha\)