Những câu hỏi liên quan
NH
Xem chi tiết
CC
Xem chi tiết
DT
28 tháng 8 2017 lúc 16:11

nếu \(x=\dfrac{2}{2}\)\(y=\dfrac{3}{2}\)

\(m=\dfrac{2+3}{2x2}\)\(=\dfrac{5}{4}\)

\(x=\dfrac{2}{2}\)\(=\dfrac{2x2}{2x2}\)\(=\dfrac{4}{4}\) ; \(y=\dfrac{3}{2}\)\(=\dfrac{3x2}{2x2}\)\(=\dfrac{6}{4}\)

vậy \(\dfrac{4}{4}\)\(< \dfrac{5}{4}\)\(< \dfrac{6}{4}\)

Bình luận (0)
NN
28 tháng 8 2017 lúc 21:23

Đây nhé!!!

Chương I  : Số hữu tỉ. Số thực

Bình luận (0)
MS
29 tháng 8 2017 lúc 12:23

\(\left\{{}\begin{matrix}x=\dfrac{a}{m}\\y=\dfrac{b}{m}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2a}{2m}\\y=\dfrac{2b}{2m}\end{matrix}\right.\)

\(x< y\Leftrightarrow a< b\)

\(\Leftrightarrow a+a< a+b\Leftrightarrow2a< a+b\Leftrightarrow\dfrac{2a}{2m}< \dfrac{a+b}{2m}\)

Nên:\(x< z\)

\(\Leftrightarrow a+b< b+b\Leftrightarrow a+b< 2b\Leftrightarrow\dfrac{a+b}{2m}< \dfrac{2b}{2m}\)

Nên \(z< y\)

Vậy \(x< z< y\)

Bình luận (0)
VT
Xem chi tiết
SK
Xem chi tiết
TB
8 tháng 4 2017 lúc 21:27

Theo đề bài ta có x = , y = ( a, b, m ∈ Z, m > 0)

Vì x < y nên ta suy ra a< b

Ta có : x = , y = ; z =

Vì a < b => a + a < a +b => 2a < a + b

Do 2a< a +b nên x < z (1)

Vì a < b => a + b < b + b => a + b < 2b

Do a+b < 2b nên z < y (2)

Từ (1) và (2) ta suy ra x < z< y

Bình luận (2)
TB
8 tháng 4 2017 lúc 19:56

Hãy chứng tỏ rằngGiả sử x = ; y = ( a, b, m Z, b # 0) và x < y. Hãy chứng tỏ rằng nếu chọn z =∈ thì ta có x < z < yLời giải:Theo đề bài ta có x = , y = ( a, b, m Z, m > 0)∈Vì x < y nên ta suy ra a< bTa có : x = , y = ; z = Vì a < b => a + a < a +b => 2a < a + b

Bình luận (0)
TT
8 tháng 4 2017 lúc 20:03

Theo đề bài ta có x = , y = ( a, b, m ∈ Z, m > 0)

Vì x < y nên ta suy ra a< b

Ta có : x = , y = ; z =

Vì a < b => a + a < a +b => 2a < a + b

Do 2a< a +b nên x < z (1)

Vì a < b => a + b < b + b => a + b < 2b

Do a+b < 2b nên z < y (2)

Từ (1) và (2) ta suy ra x < z< y

Bình luận (0)
BP
Xem chi tiết
NT
23 tháng 8 2017 lúc 15:21

Ta có: \(x< y\Rightarrow\dfrac{a}{m}< \dfrac{b}{m}\Rightarrow a< b\left(m>0\right)\)

\(z=\dfrac{a+b}{2m}>\dfrac{a+a}{2m}=\dfrac{2a}{2m}=\dfrac{a}{m}=x\)

\(z=\dfrac{a+b}{2m}< \dfrac{b+b}{2m}=\dfrac{2b}{2m}=\dfrac{b}{m}=y\)

\(\Rightarrow x< z< y\)

Bình luận (0)
TH
Xem chi tiết
ND
24 tháng 6 2017 lúc 11:51

Ta có: \(x< y\Leftrightarrow\dfrac{a}{m}< \dfrac{b}{m}\Leftrightarrow a< b\)(1)

Từ (1), Suy ra:

\(a< b\Leftrightarrow a+a< b+a\Leftrightarrow2a< a+b\left(2\right)\)

\(a< b\Leftrightarrow a+b< b+b\Leftrightarrow a+b< 2b\left(3\right)\)

Từ (2);(3), ta có:

\(2a< a+b< 2b\Leftrightarrow\dfrac{2a}{2m}< \dfrac{a+b}{2m}< \dfrac{2b}{2m}\)

\(\Leftrightarrow x< z< y\left(đpcm\right)\)

Bình luận (4)
DN
Xem chi tiết
UK
20 tháng 7 2017 lúc 10:25

1) Từ \(\dfrac{a}{b-c}+\dfrac{b}{c-a}+\dfrac{c}{a-b}=0\), suy ra

\(\dfrac{a}{b-c}=\dfrac{b}{a-c}+\dfrac{c}{b-a}=\dfrac{b^2-ab+ac-c^2}{\left(a-b\right)\left(c-a\right)}\)

Nhân cả 2 vế với \(\dfrac{1}{b-c}\Rightarrow\dfrac{a}{\left(b-c\right)^2}=\dfrac{b^2-ab+ac-c^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\left(1\right)\)

Tương tự: \(\dfrac{b}{\left(c-a\right)^2}=\dfrac{c^2-bc+ba-a^2}{\left(b-c\right)\left(c-a\right)\left(a-b\right)}\left(2\right)\)

\(\dfrac{c}{\left(a-b\right)^2}=\dfrac{a^2-ca+bc-b^2}{\left(c-a\right)\left(a-b\right)\left(b-c\right)}\left(3\right)\)

Cộng \(\left(1\right),\left(2\right),\left(3\right)\) vế theo vế, ta được:

\(\dfrac{a}{\left(b-c\right)^2}+\dfrac{b}{\left(c-a\right)^2}+\dfrac{c}{\left(a-b\right)^2}=0\)

Bình luận (0)
UK
20 tháng 7 2017 lúc 10:31

2) Đặt vế trái đẳng thức cần chứng minh là P

Đặt \(A=\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\), ta có:

\(A.\dfrac{c}{a-b}=1+\dfrac{c}{a-b}\left(\dfrac{b-c}{a}+\dfrac{c-a}{b}\right)=1+\dfrac{c}{a-b}.\dfrac{b^2-bc+ac-a^2}{ab}\)

\(=1+\dfrac{c}{a-b}.\dfrac{\left(a-b\right)\left(c-a-b\right)}{ab}=1+\dfrac{2c^2}{ab}=1+\dfrac{2c^3}{abc}\)

Tương tự: \(A.\dfrac{a}{b-c}=1+\dfrac{2a^3}{abc},A.\dfrac{b}{c-a}=1+\dfrac{2b^3}{abc}\)

Vậy \(P=3+\dfrac{2\left(a^3+b^3+c^3\right)}{abc}=9\)

P/S: \(a+b+c=0\Rightarrow a^3+b^3+c^3=3abc\)(Cái này tự chứng minh)

Bình luận (0)
NM
Xem chi tiết
H24
15 tháng 8 2017 lúc 16:06

Vì x < y nên ta có:

\(\dfrac{a}{m}< \dfrac{b}{m}\)

\(\Rightarrow\dfrac{a}{m}< \dfrac{a+b}{m+m}< \dfrac{b}{m}\)

\(\Rightarrow\dfrac{a}{m}< \dfrac{a+b}{2m}< \dfrac{b}{m}\)

\(\Rightarrow x< z< y\left(đpcm\right)\)

Vậy \(x< z< y\)

Bình luận (0)
HH
Xem chi tiết
NL
30 tháng 1 2019 lúc 21:06

Cách làm đơn giản nhất:

Do \(\int f\left(x\right)dx=F\left(x\right)\Rightarrow F'\left(x\right)=f\left(x\right)\)

Ta có: \(F\left(x\right)=A\sqrt{1-x^3}+\dfrac{B}{1+\sqrt{x}}\)

\(\Rightarrow F'\left(x\right)=\dfrac{A\left(-3x^2\right)}{2\sqrt{1-x^3}}+B.\left(-\dfrac{\dfrac{1}{2\sqrt{x}}}{\left(1+\sqrt{x}\right)^2}\right)\)

\(\Rightarrow F'\left(x\right)=\dfrac{-3A}{2}.\dfrac{x^2}{\sqrt{1-x^3}}-\dfrac{B}{2}.\dfrac{1}{\sqrt{x}\left(1+\sqrt{x}\right)^2}=f\left(x\right)\)

Đồng nhất hệ số ta được:

\(\left\{{}\begin{matrix}\dfrac{-3A}{2}=1\\\dfrac{-B}{2}=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}A=\dfrac{-2}{3}\\B=-2\end{matrix}\right.\) \(\Rightarrow A+B=-\dfrac{8}{3}\)

Bình luận (0)