Bài 1: Tập hợp Q các số hữu tỉ

CC

Giả sử \(x=\dfrac{a}{m},y=\dfrac{b}{m}\left(a,b,m\in Z,m\ne0\right)\) và x < y . Hãy chứng tỏ rằng nếu chọn \(z=\dfrac{a+b}{2m}\) thì ta có x < z < y.

Hướng dẫn : Sử dụng tính chất : Nếu \(a,b,c\in Z\) và a < b thì a + c < b + c .

DT
28 tháng 8 2017 lúc 16:11

nếu \(x=\dfrac{2}{2}\)\(y=\dfrac{3}{2}\)

\(m=\dfrac{2+3}{2x2}\)\(=\dfrac{5}{4}\)

\(x=\dfrac{2}{2}\)\(=\dfrac{2x2}{2x2}\)\(=\dfrac{4}{4}\) ; \(y=\dfrac{3}{2}\)\(=\dfrac{3x2}{2x2}\)\(=\dfrac{6}{4}\)

vậy \(\dfrac{4}{4}\)\(< \dfrac{5}{4}\)\(< \dfrac{6}{4}\)

Bình luận (0)
NN
28 tháng 8 2017 lúc 21:23

Đây nhé!!!

Chương I  : Số hữu tỉ. Số thực

Bình luận (0)
MS
29 tháng 8 2017 lúc 12:23

\(\left\{{}\begin{matrix}x=\dfrac{a}{m}\\y=\dfrac{b}{m}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2a}{2m}\\y=\dfrac{2b}{2m}\end{matrix}\right.\)

\(x< y\Leftrightarrow a< b\)

\(\Leftrightarrow a+a< a+b\Leftrightarrow2a< a+b\Leftrightarrow\dfrac{2a}{2m}< \dfrac{a+b}{2m}\)

Nên:\(x< z\)

\(\Leftrightarrow a+b< b+b\Leftrightarrow a+b< 2b\Leftrightarrow\dfrac{a+b}{2m}< \dfrac{2b}{2m}\)

Nên \(z< y\)

Vậy \(x< z< y\)

Bình luận (0)

Các câu hỏi tương tự
VT
Xem chi tiết
PL
Xem chi tiết
NM
Xem chi tiết
SK
Xem chi tiết
AM
Xem chi tiết
CT
Xem chi tiết
CT
Xem chi tiết
LL
Xem chi tiết
NT
Xem chi tiết