Tìm đkxđ
\(\sqrt{\dfrac{2x+3}{7-x}-1}\)
giải các hệ phương trình
\(\left\{{}\begin{matrix}\dfrac{2x+1}{4}-\dfrac{y-2}{3}=\dfrac{1}{12}\\\dfrac{x+5}{2}=\dfrac{y+7}{3}-4\end{matrix}\right.\)
b2.
\(A=\sqrt{3+\sqrt{5}}+\sqrt{7-3\sqrt{5}}-\sqrt{2}\)
B3. Tìm ĐKXĐ
\(\dfrac{1}{x\sqrt{x}+1}-\dfrac{2}{\sqrt{x}+1}\)
b4. so sánh A với 1
A=\(\dfrac{\sqrt{x}}{x-\sqrt{x}+1}\)
b5.tính
a,\(\sin47+2\sin38-\cos43-\cos52\)
b, \(C=\dfrac{2\sin^2x-1}{\sin x-\cos x}\)
Bài 2:
Ta có: \(A=\sqrt{3+\sqrt{5}}+\sqrt{7-3\sqrt{5}}-\sqrt{2}\)
\(=\dfrac{\sqrt{6+2\sqrt{5}}+\sqrt{14-6\sqrt{5}}-2}{\sqrt{2}}\)
\(=\dfrac{\sqrt{5}+1+3-\sqrt{5}-2}{\sqrt{2}}=\sqrt{2}\)
Tìm `ĐKXĐ`:
\(\sqrt{\dfrac{-5}{6+x}}\)
\(\sqrt{\dfrac{-2}{6-x}}\)
\(\sqrt{\dfrac{-x+3}{-6}}\)
\(\sqrt{\dfrac{7x-1}{-9}}\)
\(\sqrt{\dfrac{x+2}{x^2+2x+1}}\)
\(\sqrt{\dfrac{x-2}{x^2-2x+4}}\)
\(a,\dfrac{-5}{x+6}\ge0\\ mà\left(-5< 0\right)\\ \Rightarrow x+6< 0\\ \Rightarrow x< -6\\ b,\dfrac{2}{6-x}\ge0\\ mà\left(2>0\right)\\ \Rightarrow6-x>0\\ \Rightarrow x< 6\\ c,\dfrac{-x+3}{-6}\ge0\\ mà-6< 0\\ \Rightarrow-x+3< 0\\ \Rightarrow x>3\\\)
\(d,\dfrac{7x-1}{-9}\ge0\\mà-9< 0\\ \Rightarrow 7x-1\le0\\ \Rightarrow x\le\dfrac{1}{7}\\ e,\dfrac{x+2}{x^2+2x+1}\ge0\\ mà\left(x^2+2x+1\right)>0\forall x\\ \Rightarrow x+2\ge0\\ \Rightarrow x\ge-2\\ f,\dfrac{x-2}{x^2-2x+4}\ge0\\ mà\left(x^2-2x+4\right)>0\forall x\\ \Rightarrow x-2\ge0\\ \Rightarrow x\ge2\)
Chứng minh : \(x^2-2x+4>0\\ x^2-2x+1+3=\left(x-1\right)^2+3\ge3>0\)
a: ĐKXĐ: \(\dfrac{-5}{x+6}>=0\)
=>x+6<0
=>x<-6
b: ĐKXĐ: (-2)/(6-x)>=0
=>6-x<0
=>x>6
c: ĐKXĐ: (-x+3)/(-6)>=0
=>-x+3<=0
=>-x<=-3
=>x>=3
d: ĐKXĐ: (7x-1)/-9>=0
=>7x-1<=0
=>x<=1/7
e: ĐKXĐ: (x+2)/(x^2+2x+1)>=0
=>x+2>=0
=>x>=-1
f: ĐKXĐ: (x-2)/(x^2-2x+4)>=0
=>x-2>=0
=>x>=2
Tìm ĐKXĐ
\(B=\sqrt{2x-1}+\sqrt{\dfrac{3-x}{\sqrt{x+2}}}\)
ĐKXĐ: \(\left\{{}\begin{matrix}2x-1\ge0\\x+2>0\\3-x\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\x>-2\\x\le3\end{matrix}\right.\)
\(\Rightarrow\dfrac{1}{2}\le x\le3\)
Tìm đkxđ của biểu thức : B = \(\sqrt{x^2-3x}\) + \(\sqrt{\dfrac{x-5}{x-1}}\) - \(\sqrt[3]{2x-1}\)
Tìm ĐKXĐ của các biểu thức :
a) A = \(\dfrac{1}{\sqrt{x^2-2x-1}}\)
b) B = \(\dfrac{1}{\sqrt{x-\sqrt{2x+1}}}\)
a) Biểu thức xác định `<=> x^2-2x-1>0`
`<=>(x^2-2x+1)-2>0`
`<=>(x-1)^2-(\sqrt2)^2>0`
`<=>(x-1+\sqrt2)(x-1-\sqrt2)>0`
`<=>` \(\left[{}\begin{matrix}x< 1-\sqrt{2}\\x>1+\sqrt{2}\end{matrix}\right.\)
`D=(-∞; 1-\sqrt2) \cup (1+\sqrt2 ; +∞)`
b) Biểu thức xác định `<=> x-\sqrt(2x+1)>0`
`<=> x>\sqrt(2x+1)`
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\2x+1\ge0\\x^2>2x+1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ge-\dfrac{1}{2}\\\left[{}\begin{matrix}x< 1-\sqrt{2}\\x>1+\sqrt{2}\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow x>1+\sqrt{2}\)
`D=(1+\sqrt2 ; +∞)`
Tìm ĐKXĐ của \(\dfrac{1}{\sqrt{x-\sqrt{2x-1}}}\)
ĐKXĐ: 2x-1>=0 và \(x-\sqrt{2x-1}>0\)
=>x>=1/2 và x>căn 2x-1
=>x>=1/2 và x^2>2x-1
=>x>=1/2 và x^2-2x+1>0
=>x>=1/2 và x<>1
\(\dfrac{1}{\sqrt[]{x-\sqrt[]{2x-1}}}\left(1\right)\)
\(\left(1\right)xđ\Leftrightarrow\left\{{}\begin{matrix}x-\sqrt[]{2x-1}>0\\2x-1\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt[]{2x-1}< x\left(2\right)\\x\ge\dfrac{1}{2}\end{matrix}\right.\) \(\left(I\right)\)
\(\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\2x-1\ge0\\2x-1< x^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ge\dfrac{1}{2}\\x^2+2x-1>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ge\dfrac{1}{2}\\\left(x-1\right)^2>0,\forall x\ne0\end{matrix}\right.\) \(\Leftrightarrow x\ge\dfrac{1}{2}\)
\(\left(I\right)\Leftrightarrow x\ge\dfrac{1}{2}\)
Đính chính
\(...\left(x-1\right)^2>0,\forall x\ne1\)
\(...\Rightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\x\ne1\end{matrix}\right.\)
Cho: \(P=\dfrac{2x+2\sqrt{x}+2}{\sqrt{x}}\) (ĐKXĐ: x>0; \(x\ne1\)). Tìm giá trị nhỏ nhất của biểu thức: \(\dfrac{7}{P}\)
\(\dfrac{7}{P}\) chỉ có GTLN chứ ko có GTNN
tìm ĐKXĐ
1, \(\sqrt{6x+1}\)
2,\(\dfrac{\sqrt{3}-4}{\sqrt{3x-5}}\)
3, \(\sqrt{\dfrac{2\sqrt{15}-\sqrt{59}}{x-7}}\)
4,\(\sqrt{\dfrac{-3x}{1-\sqrt{2}}}\)
5, \(\sqrt{\sqrt{5}-\sqrt{3}x}\)
1.
6x + 1 ≥0
<=>6x≥-1
<=>x≥-1/6
2.
3x - 5 > 0
<=> 3x > 5
<=> x > 5/3
3.
x - 7 > 0
<=> x > 7
4.
-3x ≥0
<=>x≤0
5.
√5 - √3 . x ≥0
<=> √3 . x ≤ √5
<=> x ≤ √5/3 = (√15)/3
P = (\(\dfrac{2\sqrt{x}}{\sqrt{x}}-\dfrac{x-4}{\sqrt{x}+2}\)). \(\dfrac{1}{\sqrt{x}-2}\)
a Tìm đkxđ rồi rút gọn P
b Tìm x để P = \(\dfrac{2}{3}\)
c Tính p khi x = 8\(-\)2\(\sqrt{7}\)
a: ĐKXĐ: x>0; x<>4
\(P=\left(2-\sqrt{x}+2\right)\cdot\dfrac{1}{\sqrt{x}-2}=\dfrac{4-\sqrt{x}}{\sqrt{x}-2}\)
b: P=2/3
=>(4-căn x)/(căn x-2)=2/3
=>2căn x-4=12-3căn x
=>5căn x=16
=>x=256/25
c: Khi x=8-2căn 7 thì \(P=\dfrac{4-\sqrt{7}+1}{\sqrt{7}-1-2}=\dfrac{5-\sqrt{7}}{\sqrt{7}-3}=-4-\sqrt{7}\)
\(\left\{{}\begin{matrix}x+2+\dfrac{2}{\sqrt{y}-3}=9\\2x+4-\dfrac{1}{\sqrt{y}-3}=8\end{matrix}\right.\)
Tìm ĐKXĐ của hệ phương trình
\(Đặt:z=\dfrac{1}{\sqrt{y}-3}\left(y\ge0;y\ne9\right)\\ \left\{{}\begin{matrix}x+2+\dfrac{2}{\sqrt{y}-3}=9\\2x+4-\dfrac{1}{\sqrt{y-3}}=8\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x+2z=9-2=7\\2x-z=8-4=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2x+4z=14\\2x-z=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}5z=10\\2x-z=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}z=2\\x=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{\sqrt{y}-3}=2\\x=3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2\sqrt{y}-6=1\\x=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{y}=\dfrac{7}{2}\\x=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\left(\dfrac{7}{2}\right)^2=\dfrac{49}{4}\\x=3\end{matrix}\right.\)
Anh giải hệ lun hi, chứ ĐKXĐ là: \(\left(y\ge0;y\ne9\right)\)
\(ĐKXĐ: \begin{cases} \sqrt{y}-3 \ne 0\\\sqrt{y}\ge0\end{cases} \Leftrightarrow \begin{cases} y\ne9\\y\ge0 \end{cases}\)