CMR:\(\sqrt{2}+\sqrt{3};\sqrt{2}+\sqrt{3}+\sqrt{5}\) không là các số hữu tỉ
1) CMR \(\frac{1}{\sqrt{1.1999}}+\frac{1}{\sqrt{2.1998}}+\frac{1}{\sqrt{3.1997}}+...+\frac{1}{\sqrt{1999.1}}\ge1,999\)
2) CMR \(\frac{1}{1\sqrt{2}+2\sqrt{1}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{95\sqrt{94}+94\sqrt{95}}< 1\)
3) CMR \(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}< 2\)
4) CMR \(\sqrt{n}< \frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}< 2\sqrt{n}\)
* Cho:
A= \(\left(\dfrac{\sqrt{2}+\sqrt{3}}{\sqrt{2}-\sqrt{3}}-\dfrac{\sqrt{2}-\sqrt{3}}{\sqrt{2}+\sqrt{3}}\right).\left(\dfrac{\sqrt{3}-1}{3\sqrt{2}-\sqrt{6}}\right)\)
CMR: A là số nguyên
\(A=\left(\dfrac{\sqrt{2}+\sqrt{3}}{\sqrt{2}-\sqrt{3}}-\dfrac{\sqrt{2}-\sqrt{3}}{\sqrt{2}+\sqrt{3}}\right)\left(\dfrac{\sqrt{3}-1}{3\sqrt{2}-\sqrt{6}}\right)\)
\(=\dfrac{5+2\sqrt{6}-5+2\sqrt{6}}{-1}\cdot\dfrac{1}{\sqrt{6}}\)
=-4
CMR
\(\dfrac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\dfrac{2-\sqrt{3}}{\sqrt{2-\sqrt{2-\sqrt{3}}}}=12\)
CMR:\(\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}=2\)
Đặt \(\sqrt[3]{5\sqrt[]{2}+7}-\sqrt[3]{5\sqrt[]{2}-7}=x>0\)
\(\Rightarrow x^3=14-3\left(\sqrt[3]{5\sqrt[]{2}+7}-\sqrt[3]{5\sqrt[]{2}-7}\right)\sqrt[3]{\left(5\sqrt[]{2}+7\right)\left(5\sqrt[]{2}-7\right)}\)
\(\Rightarrow x^3=14-3x.\sqrt[3]{\left(5\sqrt[]{2}\right)^2-7^2}\)
\(\Rightarrow x^3=14-3x\)
\(\Rightarrow x^3+3x-14=0\)
\(\Rightarrow\left(x-2\right)\left(x^2+2x+7\right)=0\)
\(\Rightarrow x=2\)
Cho x,y,a tm:
\(\sqrt{x^2+\sqrt[3]{x^4y^2}}+\sqrt{y^2+\sqrt[3]{y^4x^2}}=a\)
CMR: \(\sqrt[3]{a^2}+\sqrt[3]{y^2}=\sqrt[3]{a^2}\)
Kiểm tra lại đề bài đi em, chỗ CMR đó
Đặt \(\sqrt[3]{x^2}=m\Leftrightarrow x^2=m^3;\sqrt[3]{y^2}=n\Leftrightarrow y^2=n^3\)
Thay vào biểu thức:
\(\Leftrightarrow\sqrt{m^3+m^2n}+\sqrt{n^3+mn^2}=a\\ \Leftrightarrow m^3+n^3+mn\left(m+n\right)+2\sqrt{\left(m^3+m^2n\right)\left(n^3+mn^2\right)}=a^2\\ \Leftrightarrow m^3+n^3+mn\left(m+n\right)+2\sqrt{m^2n^2\left(m+n\right)}=a^2\\ \Leftrightarrow m^3+n^3+3mn\left(m+n\right)=a^2\\ \Leftrightarrow\left(m+n\right)^3=a^2\\ \Leftrightarrow m+n=\sqrt[3]{a^2}\\ \Leftrightarrow\sqrt[3]{x^2}+\sqrt[3]{y^2}=\sqrt[3]{a^2}\)
Em chắc chắn là đề bài đúng chứ? Trước khi nhìn kĩ lại?
Tính a=\(\dfrac{\sqrt[3]{10+6\sqrt{3}}.\left(\sqrt{3}-1\right)}{\sqrt{6+2\sqrt{5}}-5}\)
b, a= \(\sqrt[3]{2-\sqrt{3}}+\sqrt[3]{2+\sqrt{3}}\) CMR \(\dfrac{64}{\left(a^2-3\right)^3}-3a\) ∈ Z
a: Sửa đề: căn 6+2căn 5-căn 5
\(a=\dfrac{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}{\sqrt{5}+1-\sqrt{5}}=\dfrac{2}{1}=2\)
b: \(a^3=2-\sqrt{3}+2+\sqrt{3}+3a\)
=>a^3-3a-4=0
=>a^3-3a=4
\(\dfrac{64}{\left(a^2-3\right)^3}-3a=\left(\dfrac{4}{a^2-3}\right)^3-3a\)
\(=\left(\dfrac{a^3-3a}{a^2-3}\right)^3-3a=a^3-3a\)
=4
Bài 1: CMR
Bài 2: CMR
CMR:\(\sqrt{2\sqrt{3\sqrt{4\sqrt{5\sqrt{.....\sqrt{2017}}}}}}< 3\)
Ta có:
\(\sqrt{2\sqrt{3\sqrt{4....\sqrt{2017}}}}\)
< \(\sqrt{2\sqrt{3\sqrt{4...\sqrt{2016\sqrt{2018}}}}}\)
\(=\sqrt{2\sqrt{3\sqrt{4...\sqrt{2017^2-1}}}}\)
< \(\sqrt{2\sqrt{3\sqrt{4...\sqrt{2015.2017}}}}\)
.......................................................................
< \(\sqrt{2.4}< \sqrt{9}=3\)
CMR : \(\sqrt{2\sqrt{3\sqrt{4\sqrt{5....\sqrt{2019\sqrt{2020}}}}}}>3\)
Cho \(A=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
Cmr \(A\le\dfrac{2}{3}\)
Ta có: \(A=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}-\dfrac{3\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-\left(2x-2\sqrt{x}+3\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-3x+8\sqrt{x}-5-2x-\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}\)
\(\Leftrightarrow A-\dfrac{2}{3}=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}-\dfrac{2}{3}\)
\(\Leftrightarrow A-\dfrac{2}{3}=\dfrac{-15\sqrt{x}+6-2\sqrt{x}-6}{3\left(\sqrt{x}+3\right)}\)
\(\Leftrightarrow A-\dfrac{2}{3}=\dfrac{-17\sqrt{x}}{3\left(\sqrt{x}+3\right)}\le0\)
\(\Leftrightarrow A\le\dfrac{2}{3}\)