Bài 1: Căn bậc hai

H24

CMR:\(\sqrt{2}+\sqrt{3};\sqrt{2}+\sqrt{3}+\sqrt{5}\) không là các số hữu tỉ

AH
17 tháng 6 2019 lúc 13:38

Lời giải:

Giả sử $\sqrt{2}+\sqrt{3}=a$ là một số hữu tỉ.

\(\Rightarrow (\sqrt{2}+\sqrt{3})^2=a^2\)

\(\Leftrightarrow 5+2\sqrt{6}=a^2\Rightarrow \sqrt{6}=\frac{a^2-5}{2}\) là số hữu tỉ.

Đặt \(\sqrt{6}=\frac{a^2-5}{2}=\frac{m}{n}(m,n\in\mathbb{Z}^+; (m,n)=1)\)

\(\Rightarrow 6=\frac{m^2}{n^2}\Rightarrow m^2=6n^2\vdots 3\)

\(\Rightarrow m\vdots 3\Rightarrow 6n^2=m^2\vdots 9\Rightarrow n^2\vdots 3\Rightarrow n\vdots 3\). Vậy $m,n$ cùng có ước chung là $3$ (vô lý vì $(m,n)=1$). Do đó điều giả sử là sai. Nghĩa là $\sqrt{2}+\sqrt{3}$ không phải số hữu tỉ.

---------------------------------

Giả sử $\sqrt{2}+\sqrt{3}+\sqrt{5}=b$ là số hữu tỉ

\(\Leftrightarrow \sqrt{2}+\sqrt{3}=b-\sqrt{5}\)

\(\Rightarrow 5+2\sqrt{6}=b^2+5-2b\sqrt{5}\) (bình phương 2 vế)

\(\Leftrightarrow 2\sqrt{6}=b^2-2b\sqrt{5}\)

\(\Rightarrow 24=b^4+20b^2-4b^3\sqrt{5}\)

\(\Leftrightarrow \sqrt{5}=\frac{b^4+20b^2-24}{4b^3}\) là số hữu tỉ.

Đặt \(\sqrt{5}=\frac{m}{n}(m,n\in\mathbb{Z}^+, (m,n)=1)\)

\(\Rightarrow 5=\frac{m^2}{n^2}\Rightarrow m^2=5n^2\)

\(\Rightarrow m^2\vdots 5\Rightarrow m\vdots 5\Rightarrow 5n^2=m^2\vdots 25\Rightarrow n^2\vdots 5\Rightarrow n\vdots 5\)

Như vậy $m,n$ có ước chung là $5$ (vô lý vì $(m,n)=1$). Do đó điều giả sử là sai. Tức là $\sqrt{2}+\sqrt{3}+\sqrt{5}$ không là số hữu tỉ.

Bình luận (0)

Các câu hỏi tương tự
HA
Xem chi tiết
NT
Xem chi tiết
TT
Xem chi tiết
H24
Xem chi tiết
NL
Xem chi tiết
NC
Xem chi tiết
MH
Xem chi tiết
DT
Xem chi tiết
MP
Xem chi tiết