CMR nếu \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\)thì
(x^2+y^2+z^2).(a^2+b^2+c^2)=(ax+bx+cx)^2
Cho \(\dfrac{bz+cy}{x\left(-ax+by+cz\right)}=\dfrac{cx+az}{y\left(ax-by+cz\right)}=\dfrac{ay+bx}{z\left(ax+by-cz\right)}\)
CMR : \(\dfrac{ay+bx}{c}=\dfrac{bz+cy}{a}=\dfrac{cx+az}{b}\)
b) \(\dfrac{x}{a\left(b^2+c^2-a^2\right)}=\dfrac{y}{b\left(a^2+c^2-b^2\right)}=\dfrac{z}{c\left(a^2+b^2-c^2\right)}\)
Phương Ann Nhã Doanh đề bài khó wá Mashiro Shiina Đinh Đức Hùng
Nguyễn Huy Tú Lightning Farron Akai Haruma
CMR: Nếu: \(\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}=\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}\) thì: \(\dfrac{x^{2021}+y^{2021}+z^{2021}}{a^{2021}+b^{2021}+c^{2021}}=\dfrac{x^{2021}}{a^{2021}}+\dfrac{y^{2021}}{b^{2021}}+\dfrac{z^{2021}}{c^{2021}}\)
Ta thấy \(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}\ge\dfrac{x^2}{a^2+b^2+c^2}+\dfrac{y^2}{a^2+b^2+c^2}+\dfrac{z^2}{a^2+b^2+c^2}=\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}\).
Mà đẳng thức xảy ra nên ta phải có x = y = z = 0 (Do \(a^2,b^2,c^2>0\)).
Thay vào đẳng thức cần cm ta có đpcm.
1.
a) CMR: Nếu a+b+c=0 thì \(\dfrac{1}{a^2+b^2+c^2}+\dfrac{1}{b^2+c^2-a^2}+\dfrac{1}{c^2+a^2-b^2}=0\)
b) Nếu \(\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4a-4b+c}\) thì:
\(\dfrac{a}{x+2y+z}=\dfrac{b}{2x+2y-z}=\dfrac{c}{4x-4y+z}\)
2. Cho \(\dfrac{x}{x^2+x+1}=a\) .Tính \(M=\dfrac{x^2}{x^4-x^2+1}\)
Bài 1: Cho 4 số a,b,c,d thỏa mãn \(b^2=ac;c^2=bd\\ \) . Chứng minh \(\dfrac{a}{d}=\left(\dfrac{a+b+c}{b+c+d}\right)^3\)
Bài 2 : Cho \(\dfrac{a}{b}=\dfrac{c}{d}\). Chứng minh
a) \(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)
b) \(\dfrac{ab}{cd}=\dfrac{a^2-b^2}{c^2-d^2}\)
Bài 3 : CMR : Nếu a(y+z)=b(z+x)=c(x+y) trong đó a,b,c là các số thực khác nhau thì \(\dfrac{y-z}{a\left(b-c\right)}=\dfrac{z-x}{b\left(c-a\right)}=\dfrac{x-y}{c\left(a-b\right)}\)
Bài 4 : Cho \(\dfrac{bz-cy}{a}=\dfrac{cx-az}{b}=\dfrac{ay-bx}{c}\). Chứng minh \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\)
Bài 5 : CMR : Nếu \(\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4a-4b+c}\) thì \(\dfrac{a}{x+2y+z}=\dfrac{b}{2x+y-z}=\dfrac{c}{4x-4y+z}\)
Ta có:
\(b^2=ac\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}\left(1\right)\)
\(c^2=bd\Rightarrow\dfrac{b}{c}=\dfrac{c}{d}\left(2\right)\)
Từ (1) và (2), suy ra: \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\)
\(\Rightarrow\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\dfrac{a}{d}\)
Vậy \(\dfrac{a}{d}=\left(\dfrac{a+b+c}{b+c+d}\right)^3\)(đpcm)
~ Học tốt!~
1.Cho x+y+z=0 ,rút gọn:
\(A=\dfrac{x^2+y^2+z^2}{\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2}\)
2.Tính \(A=\dfrac{x-y}{x+y}\)biết x2-2y2=xy (y khácx;x+y khác 0)
Cho x,y,z khác 0 và \(\dfrac{\left(ax+by+cz\right)^2}{x^2+y^2+z^2}=a^2+b^2+c^2\)
CMR:\(\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)
1) Đặt \(B=x^2+y^2+z^2\)
\(C=\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=2\left(x^2+y^2+z^2\right)-2\left(xy+yz+xz\right)\)
Ta có: \(x+y+z=0\Rightarrow\left(x+y+z\right)^2=0\)
\(\Leftrightarrow-2\left(xy+yz+xz\right)=x^2+y^2+z^2\)
Suy ra: \(C=2\left(x^2+y^2+z^2\right)-2\left(xy+yz+xz\right)=2\left(x^2+y^2+z^2\right)+x^2+y^2+z^2=3\left(x^2+y^2+z^2\right)\)
\(\Rightarrow A=\dfrac{B}{C}=\dfrac{x^2+y^2+z^2}{3\left(x^2+y^2+z^2\right)}=\dfrac{1}{3}\)
2) \(x^2-2y^2=xy\Leftrightarrow x^2-xy-2y^2=0\)
\(\Leftrightarrow x^2+xy-2xy-2y^2=0\)
\(\Leftrightarrow x\left(x+y\right)-2y\left(x+y\right)=0\)
\(\Leftrightarrow\left(x-2y\right)\left(x+y\right)=0\)
Do \(x+y\ne0\) nên \(x-2y=0\Leftrightarrow x=2y\)
Do đó: \(A=\dfrac{2y-y}{2y+y}=\dfrac{y}{3y}=\dfrac{1}{3}\)
3) Từ giả thiết, ta suy ra
\(\left(ax+by+cz\right)^2=\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\)
Bạn chịu khó tự biến đổi, ta được
\(\left(ay-bx\right)^2+\left(az-cx\right)^2+\left(bz-cy\right)^2=0\)
\(\left\{{}\begin{matrix}ay-bx=0\Leftrightarrow ay=bx\Leftrightarrow\dfrac{a}{x}=\dfrac{b}{y}\\az-cx=0\Leftrightarrow az=cx\Leftrightarrow\dfrac{a}{x}=\dfrac{c}{z}\\bz-cy=0\Leftrightarrow bz=cy\Leftrightarrow\dfrac{b}{y}=\dfrac{c}{z}\end{matrix}\right.\)
Vậy ta suy ra đpcm
P/S: Đây là BĐT Bunyakovsky với 3 số
tìm x,y,z biết \(\dfrac{xy}{ay+bx}=\dfrac{yz}{bz+cy}=\dfrac{xz}{cx+az}=\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}\)(a,b,c là hằng số)
Cho a,b,c và x,y,z khác nhau và khác 0
CMR: \(\text{Nếu }\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0,\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\)
\(\text{Thì }\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1\)
+) \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\)
\(\Rightarrow\dfrac{ayz}{xyz}+\dfrac{bxz}{xyz}+\dfrac{cxy}{xyz}=0\)
\(\Rightarrow\dfrac{ayz+bxz+cxy}{xyz}=0\)
\(\Rightarrow ayz+bxz+cxy=0\)
+) \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\)
\(\Rightarrow\left(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}\right)^2=1\)
\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\dfrac{xy}{ab}+2\dfrac{xz}{ac}+2\dfrac{yz}{bc}=1\)
\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{xy}{ab}+\dfrac{xz}{ac}+\dfrac{yz}{bc}\right)=1\)
\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{cxy}{abc}+\dfrac{bxz}{abc}+\dfrac{ayz}{abc}\right)=1\)
\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{ayz+bxz+cxy}{abc}\right)=1\)
\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{0}{abc}\right)=1\)
\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+0=1\) \(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1\left(đpcm\right)\)Cho: \(\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)và x, y, z khác 0
CMR: \(\dfrac{x^2+y^2+z^2}{\left(ax+by+cz\right)^2}=\dfrac{1}{a^2+b^2+c^2}\)
Giả sử điều cần c/m là đúng . Khi đó , ta có :
\(\dfrac{x^2+y^2+z^2}{\left(ax+by+cz\right)^2}=\dfrac{1}{a^2+b^2+c^2}\)
\(\Leftrightarrow\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)=\left(ax+by+cz\right)^2\)
\(\Leftrightarrow x^2a^2+y^2a^2+z^2a^2+x^2b^2+y^2b^2+z^2b^2+x^2c^2+y^2c^2+z^2c^2\)
\(=x^2a^2+b^2y^2+c^2z^2+2axby+2bycz+2axcz\)
\(\Leftrightarrow y^2a^2+z^2a^2+x^2b^2+z^2b^2+x^2c^2+y^2c^2=2axby+2bycz+2axcz\)
\(\Leftrightarrow y^2a^2+z^2a^2+x^2b^2+z^2b^2+x^2c^2+y^2c^2-2axby-2bycz-2axcz=0\) \(\Leftrightarrow\left(y^2a^2-2axby+b^2x^2\right)+\left(b^2z^2-2bycz+c^2y^2\right)+\left(x^2c^2-2axcz+a^2z^2\right)=0\)
\(\Leftrightarrow\left(ay-bx\right)^2+\left(bz-cy\right)^2+\left(cx-az\right)^2=0\left(1\right)\)
Do \(\left\{{}\begin{matrix}\left(ay-bx\right)^2\ge0\\\left(bz-cy\right)^2\ge0\\\left(cx-az\right)^2\ge0\end{matrix}\right.\)
\(\Rightarrow\left(ay-bx\right)^2+\left(bz-cy\right)^2+\left(cx-az\right)^2\ge0\left(2\right)\)
Từ ( 1 ) ; ( 2 ) \(\Rightarrow\left\{{}\begin{matrix}ay-bx=0\\bz-cy=0\\cx-az=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}ay=bx\\bz=cy\\cx=az\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{x}=\dfrac{b}{y}\\\dfrac{b}{y}=\dfrac{c}{z}\\\dfrac{c}{z}=\dfrac{a}{x}\end{matrix}\right.\) \(\Rightarrow\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)
Điều này đúng với GT đề bài cho
\(\Rightarrow\) Điều cần c/m là đúng
\(\Rightarrow\dfrac{x^2+y^2+z^2}{\left(ax+by+cz\right)^2}=\dfrac{1}{a^2+b^2+c^2}\left(đpcm\right)\)
Chứng minh rằng nếu \(\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}=\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}\) thì: \(\dfrac{x^{2019}+y^{2019}+z^{2019}}{a^{2019}+b^{2019}+c^{2019}}=\dfrac{x^{2019}}{a^{2019}}+\dfrac{y^{2019}}{b^{2019}}+\dfrac{z^{2019}}{c^{2019}}\)
ĐKXĐ: \(\left\{{}\begin{matrix}a\ne0\\b\ne0\\c\ne0\end{matrix}\right.\)Ta có: \(\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}=\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}\)
\(\Leftrightarrow\left(a^2+b^2+c^2\right)\cdot\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}=\left(a^2+b^2+c^2\right)\cdot\left(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}\right)\)
\(\Leftrightarrow x^2+y^2+z^2=x^2+\dfrac{x^2\cdot\left(b^2+c^2\right)}{a^2}+y^2+\dfrac{y^2\left(a^2+c^2\right)}{b^2}+z^2+\dfrac{z^2\cdot\left(a^2+b^2\right)}{c^2}\)
\(\Leftrightarrow x^2\cdot\dfrac{b^2+c^2}{a^2}+y^2\cdot\dfrac{a^2+c^2}{b^2}+z^2\cdot\dfrac{a^2+b^2}{c^2}=0\)(1)
Vì (1) luôn không âm mà a,b,c≠0
nên x=y=z=0
⇒\(\dfrac{x^{2019}+y^{2019}+z^{2019}}{a^{2019}+b^{2019}+c^{2019}}=\dfrac{0^{2019}+0^{2019}+0^{2019}}{a^{2019}+b^{2019}+c^{2019}}=0\)
mà \(\dfrac{x^{2019}}{a^{2019}}+\dfrac{y^{2019}}{b^{2019}}+\dfrac{z^{2019}}{c^{2019}}=\dfrac{0^{2019}}{a^{2019}}+\dfrac{0^{2019}}{b^{2019}}+\dfrac{0^{2019}}{c^{2019}}=0\)
nên \(\dfrac{x^{2019}+y^{2019}+z^{2019}}{a^{2019}+b^{2019}+c^{2019}}=\dfrac{x^{2019}}{a^{2019}}+\dfrac{y^{2019}}{b^{2019}}+\dfrac{z^{2019}}{c^{2019}}\)