Bài 9: Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp

PN

Cho a,b,c và x,y,z khác nhau và khác 0

CMR: \(\text{Nếu }\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0,\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\)

\(\text{Thì }\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1\)

LG
20 tháng 11 2017 lúc 8:10

+) \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\)

\(\Rightarrow\dfrac{ayz}{xyz}+\dfrac{bxz}{xyz}+\dfrac{cxy}{xyz}=0\)

\(\Rightarrow\dfrac{ayz+bxz+cxy}{xyz}=0\)

\(\Rightarrow ayz+bxz+cxy=0\)

+) \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\)

\(\Rightarrow\left(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}\right)^2=1\)

\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\dfrac{xy}{ab}+2\dfrac{xz}{ac}+2\dfrac{yz}{bc}=1\)

\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{xy}{ab}+\dfrac{xz}{ac}+\dfrac{yz}{bc}\right)=1\)

\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{cxy}{abc}+\dfrac{bxz}{abc}+\dfrac{ayz}{abc}\right)=1\)

\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{ayz+bxz+cxy}{abc}\right)=1\)

\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{0}{abc}\right)=1\)

\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+0=1\) \(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1\left(đpcm\right)\)
Bình luận (0)

Các câu hỏi tương tự
NA
Xem chi tiết
NC
Xem chi tiết
NC
Xem chi tiết
TT
Xem chi tiết
HC
Xem chi tiết
VK
Xem chi tiết
TH
Xem chi tiết
NA
Xem chi tiết
DN
Xem chi tiết