Những câu hỏi liên quan
NT
Xem chi tiết
VT
23 tháng 7 2019 lúc 10:39

ĐK: \(x-9\ne0\Rightarrow x\ne9\)

\(\sqrt{x}\ge0\Rightarrow x\ge0\)

\(x+\sqrt{x}-6\ne0\Rightarrow x+3\sqrt{x}-2\sqrt{x}-6\ne0\Rightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)\ne0\)

\(\Rightarrow\sqrt{x}-2\ne0\Rightarrow\sqrt{x}\ne2\Rightarrow x\ne4\)

ĐKXĐ: \(x\ge0;x\ne4;x\ne9\)

\(A=\left(\frac{x-3\sqrt{x}}{x-9}\right):\left(\frac{1}{x+\sqrt{x}-6}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)

\(=\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\left(\frac{1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)

\(=\frac{\sqrt{x}}{\sqrt{x}+3}:\left(\frac{1+\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\)

\(=\frac{\sqrt{x}}{\sqrt{x}+3}:\frac{1+x-9-x+4\sqrt{x}-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{\sqrt{x}}{\sqrt{x}+3}.\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{4\sqrt{x}-12}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{4\left(\sqrt{x}-3\right)}\)

2, Với \(x=\frac{25}{16}\)\(\Rightarrow\sqrt{x}=\sqrt{\frac{25}{16}}=\frac{5}{4}\)

\(A=\frac{\frac{5}{4}\left(\frac{5}{4}-2\right)}{4\left(\frac{5}{4}-3\right)}=\frac{5}{4}.\left(-\frac{3}{4}\right):4\left(-\frac{7}{4}\right)=-\frac{15}{16}:-7=\frac{15}{112}\)

\(\orbr{\begin{cases}\orbr{\begin{cases}\\\end{cases}}\\\end{cases}}\)\(\orbr{\begin{cases}\orbr{\begin{cases}\sqrt{x}-2< 0\\\sqrt{x}-3>0\end{cases}\Rightarrow\orbr{\begin{cases}\sqrt{x}< 2\\\sqrt{x}>3\end{cases}}\Rightarrow\orbr{\begin{cases}x< 4\\x>9\end{cases}}}\\\orbr{\begin{cases}\sqrt{x}-2>0\\\sqrt{x}-3< 0\end{cases}\Rightarrow\orbr{\begin{cases}\sqrt{x}>2\\\sqrt{x}< 3\end{cases}\Rightarrow\orbr{\begin{cases}x>4\\x< 9\end{cases}}}}\end{cases}}\)

Bình luận (0)
TT
Xem chi tiết
TT
3 tháng 8 2017 lúc 15:13

ai giúp mih trả lời với

Bình luận (0)
TA
Xem chi tiết
NT
20 tháng 2 2022 lúc 20:03

a: Thay x=9 vào A, ta được:

\(A=\dfrac{3+2}{3-5}=\dfrac{5}{-2}=\dfrac{-5}{2}\)

\(B=\dfrac{3\sqrt{x}-15+20-2\sqrt{x}}{x-25}=\dfrac{\sqrt{x}+5}{x-25}=\dfrac{1}{\sqrt{x}-5}\)

b: Để \(A=B\cdot\left|x-4\right|\) thì \(\left|x-4\right|=\dfrac{A}{B}=\dfrac{\sqrt{x}+2}{\sqrt{x}-5}:\dfrac{1}{\sqrt{x}-5}=\sqrt{x}+2\)

\(\Leftrightarrow x-4=\sqrt{x}+2\)

\(\Leftrightarrow x-\sqrt{x}-6=0\)

=>x=9

Bình luận (1)
HD
Xem chi tiết
NT
7 tháng 9 2021 lúc 21:09

Bài 5: 

a: Thay \(x=4+2\sqrt{3}\) vào E, ta được:

\(E=\dfrac{\sqrt{3}+1-1}{\sqrt{3}+1-3}=\dfrac{\sqrt{3}}{\sqrt{3}-2}=-3-2\sqrt{3}\)

b: Để E<1 thì E-1<0

\(\Leftrightarrow\dfrac{\sqrt{x}-1-\sqrt{x}+3}{\sqrt{x}-3}< 0\)

\(\Leftrightarrow\sqrt{x}-3< 0\)

hay x<9

Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0\le x< 9\\x\ne1\end{matrix}\right.\)

c: Để E nguyên thì \(4⋮\sqrt{x}-3\)

\(\Leftrightarrow\sqrt{x}-3\in\left\{-2;1;2;4\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{4;5;7\right\}\)

hay \(x\in\left\{16;25;49\right\}\)

Bình luận (0)
NT
7 tháng 9 2021 lúc 21:17

Câu 2:
a) Ta có \(x=4-2\sqrt{3}\Rightarrow\sqrt{x}=\sqrt{\left(\sqrt{3}-2\right)^2}=\sqrt{3}-2\)

Thay \(x=\sqrt{3}-1\) vào \(B\), ta được

\(B=\dfrac{\sqrt{3}-1-2}{\sqrt{3}-1+1}=\dfrac{\sqrt{3}-3}{\sqrt{3}}=1-\sqrt{3}\)

b) Để \(B\) âm thì \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}< 0\) mà \(\sqrt{x}+1\ge1>0\forall x\) \(\Rightarrow\sqrt{x}-2< 0\Rightarrow\sqrt{x}< 2\Rightarrow x< 4\)

c) Ta có \(B=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}=1-\dfrac{3}{\sqrt{x}+1}\)

Với mọi \(x\ge0\) thì \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+1\ge1\Rightarrow\dfrac{3}{\sqrt{x}+1}\le3\Rightarrow B=1-\dfrac{3}{\sqrt{x}+1}\ge-2\)

Dấu "=" xảy ra khi \(\sqrt{x}+1=1\Leftrightarrow x=0\)

Vậy \(B_{min}=-2\) khi \(x=0\)

Bình luận (0)
QN
Xem chi tiết
NT
5 tháng 1 2023 lúc 22:11

a: \(P=\dfrac{x+5\sqrt{x}-10\sqrt{x}-5\sqrt{x}+25}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}=\dfrac{\left(\sqrt{x}-5\right)^2}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}=\dfrac{\sqrt{x}-5}{\sqrt{x}+5}\)

b: Khi x=9 thì \(P=\dfrac{3-5}{3+5}=\dfrac{-2}{8}=\dfrac{-1}{4}\)

c: Để P=1/2 thì căn x-5/căn x+5=1/2

=>2 căn x-10=căn x+5

=>căn x=15

=>x=225

Bình luận (0)
HN
Xem chi tiết
NL
18 tháng 5 2021 lúc 17:15

\(A=3+\sqrt{5^2}=3+5=8\)

\(B=\sqrt{2^2.5}+3\sqrt{5}=2\sqrt{5}+3\sqrt{5}=5\sqrt{5}\)

Bình luận (0)
NT
Xem chi tiết
MN
23 tháng 4 2021 lúc 9:43

Câu 2:

a,

diện tích nhựa là: 2π. (0,4:2). 16= 6,4π (cm2)

b,

gọi chữ số hàng chục là a  (a>0, a ∈N) 

hàng đơn vị là b (b∈N)

hiệu 2 chữ số là: a-b=3 (1)

tổng bình phương 2 chữ số là: a2+b2=45 (2) 

từ (1) và (2) ta có hpt:

\(\left\{{}\begin{matrix}a-b=3\\a^2+b^2=45\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}a=6\\b=3\end{matrix}\right.\)

vậy chữ số đó là 63

 

Bình luận (1)
TK
25 tháng 4 2021 lúc 10:38

Câu 1

a, Thay x=25 vào biểu thức B ta có

B=\(\dfrac{\sqrt{25}-3}{\sqrt{25}-1}=\dfrac{5-3}{5-1}=\dfrac{2}{4}=\dfrac{1}{2}\)

b, Ta có M=\(A\cdot B\)

\(\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}\right)\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}-1}\)

=\(\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}-1}\)

=\(\dfrac{3x-3\sqrt{x}}{\left(\sqrt{x}+3\right)}\cdot\dfrac{1}{\sqrt{x}-1}\)

=\(\dfrac{3\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

=\(\dfrac{3\sqrt{x}}{\sqrt{x}+3}\)

c,  Để M<\(\sqrt{M}\)

Thì\(\text{​​}\text{​​}\text{​​}\text{​​}\dfrac{3\sqrt{x}}{\sqrt{x}+3}< \sqrt{\dfrac{3\sqrt{x}}{\sqrt{x}+3}}\)

\(\text{​​}\text{​​}\text{​​}\text{​​}\dfrac{3\sqrt{x}}{\sqrt{x}+3}< \dfrac{\sqrt{3\sqrt{x}\left(\sqrt{x}+3\right)}}{\sqrt{x}+3}\)

\(\text{​​}\text{​​}\text{​​}\text{​​}3\sqrt{x}< \sqrt{3\sqrt{x}\left(\sqrt{x}+3\right)}\)

\(\text{​​}\text{​​}\text{​​}\text{​​}9x< 3\sqrt{x}\left(\sqrt{x}+3\right)\)

\(\text{​​}\text{​​}\text{​​}\text{​​}3\sqrt{x}< \sqrt{x}+3\)

\(\text{​​}\text{​​}\text{​​}\text{​​}2\sqrt{x}< 3\)

\(\text{​​}\text{​​}\text{​​}\text{​​}\sqrt{x}< \dfrac{3}{2}\)

\(\left\{{}\begin{matrix}x\ge0\\x< \dfrac{9}{4}\end{matrix}\right.\)

\(0\le x< \dfrac{9}{4}\)

 

 

 

 

 

 

 

 

Bình luận (0)
HH
23 tháng 4 2021 lúc 10:07

Câu 2:

a,

diện tích nhựa là: 2π. (0,4:2). 16= 6,4π (cm2)

b,

gọi chữ số hàng chục là a  (a>0, a ∈N) 

hàng đơn vị là b (b∈N)

hiệu 2 chữ số là: a-b=3 (1)

tổng bình phương 2 chữ số là: a2+b2=45 (2) 

từ (1) và (2) ta có hpt:

{a−b=3a2+b2=45{a−b=3a2+b2=45

=> {a=6b=3

Bình luận (16)
Xem chi tiết
LF
10 tháng 11 2016 lúc 11:40

a)Tại \(x=\frac{16}{9}\) ta có: \(A=\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{\frac{16}{9}}+1}{\sqrt{\frac{16}{9}}-1}=\frac{\frac{4}{3}+1}{\frac{4}{3}-1}=\frac{\frac{7}{3}}{\frac{1}{3}}=7\)

Tại \(x=\frac{25}{9}\) ta có: \(A=\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{\frac{25}{9}}+1}{\sqrt{\frac{25}{9}}-1}=\frac{\frac{5}{3}+1}{\frac{5}{3}-1}=\frac{\frac{8}{3}}{\frac{2}{3}}=4\)

b)Khi \(A=5\Rightarrow\frac{\sqrt{x}+1}{\sqrt{x}-1}=5\)(*)

Đk:\(\sqrt{x}-1\ne0\Rightarrow x\ne1;\sqrt{x}\ge0\Rightarrow x\ge0\)

Đặt \(\sqrt{x}+1=t\left(t\ge0\right)\),(*) trở thành

\(\frac{t}{t-2}=5\Rightarrow t=5\left(t-2\right)\)

\(\Rightarrow t=5t-10\)

\(\Rightarrow2t=5\Rightarrow t=\frac{5}{2}\)(thỏa mãn)

\(t=\frac{5}{2}\Rightarrow\sqrt{x}+1=\frac{5}{2}\)

\(\Rightarrow\sqrt{x}=\frac{3}{2}\Leftrightarrow\sqrt{x^2}=\left(\frac{3}{2}\right)^2\Leftrightarrow x=\frac{9}{4}\)(thỏa mãn)

Vậy \(x=\frac{9}{4}\)

 

 

 

Bình luận (0)
TD
Xem chi tiết
NT
4 tháng 1 2022 lúc 20:13

\(A=2\sqrt{2}+3\sqrt{2}-4\sqrt{2}=\sqrt{2}\)

B=6+18-8=16

Bình luận (0)
NM
4 tháng 1 2022 lúc 20:13

\(A=2\sqrt{2}+3\sqrt{2}-4\sqrt{2}=\sqrt{2}\\ B=2\cdot3+3\cdot6-8=6+18-8=16\)

Bình luận (0)
9D
4 tháng 1 2022 lúc 20:15

a =2 \(\sqrt{2}\) + 3\(\sqrt{2}\)- 4\(\sqrt{2}\)

=\(\sqrt{2}\)

Bình luận (0)
H24
Xem chi tiết
NT
21 tháng 8 2023 lúc 1:46

a: \(A=\dfrac{\sqrt{x}+2}{\sqrt{x}+3}\)

Khi x=25 thì \(A=\dfrac{5+2}{5+3}=\dfrac{7}{8}\)

b: \(B=\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{3}{\sqrt{x}+2}+\dfrac{x+4}{4-x}\)

\(=\dfrac{x+2\sqrt{x}+3\sqrt{x}-6-x-4}{x-4}\)

\(=\dfrac{5\sqrt{x}-10}{x-4}=\dfrac{5}{\sqrt{x}+2}\)

c: \(A\cdot B=\dfrac{5}{\sqrt{x}+2}\cdot\dfrac{\sqrt{x}+2}{\sqrt{x}+3}=\dfrac{5}{\sqrt{x}+3}\)

Để A*B>1 thì \(\dfrac{5}{\sqrt{x}+3}-1>0\)

=>\(\dfrac{5-\sqrt{x}-3}{\sqrt{x}+3}>0\)

=>\(2-\sqrt{x}>0\)

=>căn x<2

=>0<=x<4

Bình luận (0)