Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
PD
Xem chi tiết
NM
31 tháng 10 2021 lúc 13:36

\(A=4\cdot3\left(-2\right)-2\left(3+2\right)=-24-10=-34\\ B=\left(x+y\right)^2-3\left(x+y\right)=\left(x+y\right)\left(x+y-3\right)=\left(x+y\right)\left(2+1-3\right)=0\)

Bình luận (0)
NA
Xem chi tiết
H9
21 tháng 8 2023 lúc 10:39

Bài 13:

a) \(501^2\)

\(=\left(500+1\right)^2\)

\(=500^2+2\cdot500\cdot1+1^2\)

\(=250000+1000+1\)

\(=251001\)

b) \(88^2+24\cdot88+12^2\)

\(=88^2+2\cdot12\cdot88+12^2\)

\(=\left(88+12\right)^2\)

\(=100^2\)

\(=10000\)

c) \(52\cdot48\)

\(=\left(50+2\right)\left(50-2\right)\)

\(=50^2-2^2\)

\(=2500-4\)

\(=2496\)

Bài 14:

a) \(P=\left(2x-1\right)\left(4x^2+2x+1\right)+\left(x+1\right)\left(x^2-x+1\right)\)

\(P=\left(2x\right)^3-1+x^3+1\)

\(P=8x^3+x^3\)

\(P=9x^3\)

b) \(Q=\left(x-y\right)\left(x^2+xy+y^2\right)-\left(x+y\right)\left(x^2-xy+y^2\right)+2y^3\)

\(Q=x^3-y^3-x^3-y^3+2y^3\)

\(Q=-2y^3+2y^3\)

\(Q=0\)

Bình luận (0)
H24
21 tháng 8 2023 lúc 10:37

Bài `14`

`a. P = ( 2x - 1 ) ( 4x^2 + 2x + 1 ) + ( x + 1 ) ( x^2 -x+1)`

`=(2x)^3-1^3 + x^3+1^3`

`=8x^3-1+x^3+1`

`= 9x^3`

__

`b, Q = ( x - y ) ( x^2 + xy + y^2 ) - ( x + y ) ( x^2 - xy + y^2)+2y^3`

`=x^3-y^3 -(x^3+y^3)+2y^3`

`=x^3-y^3 -x^3-y^3+2y^3`

`= 0`

Bình luận (0)
HT
Xem chi tiết
TC
2 tháng 8 2021 lúc 21:52

undefined

Bình luận (0)
NT
2 tháng 8 2021 lúc 21:57

1) 

Ta có: x+y=2

nên \(\left(x+y\right)^2=4\)

\(\Leftrightarrow x^2+y^2+2xy=4\)

\(\Leftrightarrow2xy=2\)

hay xy=1

Ta có: \(x^3+y^3\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)\)

\(=2^3-3\cdot1\cdot2\)

=2

2)\(x^2+y^2=\left(x+y\right)^2-2xy=8^2-2\cdot\left(-20\right)=104\)

\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=8^3-3\cdot\left(-20\right)\cdot8=512+480=992\)

\(x^2+y^2+xy=\left(x+y\right)^2-xy=8^2-\left(-20\right)=64+20=84\)

Bình luận (0)
PN
Xem chi tiết
AH
13 tháng 12 2023 lúc 19:59

Lời giải:

a. Đặt $y=kx$ với $k$ là hệ số tỉ lệ. $k$ cố định.

Có:

$\frac{1}{9}=y_2=kx_2=3k\Rightarrow k=\frac{1}{9}:3=\frac{1}{27}$

Vậy $y=\frac{1}{27}x$

$y_1=\frac{1}{27}x_1$

Thay $y_1=\frac{-3}{5}$ thì: $\frac{-3}{5}=\frac{1}{27}x_1$

$\Rightarrow x_1=\frac{-3}{5}: \frac{1}{27}=-16,2$

b. Đặt $y=kx$

$y_1=kx_1$

$\Rightarrow -2=k.5\Rightarrow k=\frac{-2}{5}$
Vậy $y=\frac{-2}{5}x$.

$\Rightarrow y_2=\frac{-2}{5}x_2$

Thay vào điều kiện $y_2-x_2=-7$ thì:

$\frac{-2}{5}x_2-x_2=-7$

$\Leftrightarrow \farc{-7}{5}x_2=-7\Leftrightarrow x_2=5$

$y_2=\frac{-2}{5}x_2=\frac{-2}{5}.5=-2$

Bình luận (0)
NL
Xem chi tiết
TT
Xem chi tiết

Bài 1 ) a,y2=kx2⇒−2=5k⇒k=−25a,y2=kx2⇒−2=5k⇒k=−25 (k là hệ số tỉ lệ)

⇒y1=−25x1=−3⇒x1=152⇒y1=−25x1=−3⇒x1=152

b,y1=kx1⇒k=32⇒y2=32x2⇒x2+32x2=10⇒52x2=10⇒x2=4⇒y2=32⋅4=6

Bài 2 gọi khối lượng là x

Có khối lương tỉ lệ thuận với độ dài =) x=k.4m

=) 100g=k.4m =) k=25

Có khối lương tỉ lệ thuận với độ dài =) x=k.500m

=)x=25.500 ( vì k=25 )

=) x=12500g=12,5 kg

HT

Bình luận (0)
 Khách vãng lai đã xóa
NA
Xem chi tiết
H24
20 tháng 11 2021 lúc 10:35

\(A=3x^3-6x^2+9x-3x^3+2x^2+5x^2-5x=x^2+4x\\ B=\left(x^2+xy+y^2\right)\left(x-y\right)=x^3-y^3\)

Bình luận (0)
LA
Xem chi tiết
TH
19 tháng 12 2020 lúc 16:15

Ta có \(xy\le\dfrac{\left(x+y\right)^2}{4}\).

Do đó ta có: \(x+y+xy=x+y-2xy+3xy\le x+y-2xy+\dfrac{3}{4}\left(x+y\right)^2\)

\(\Rightarrow x^2+y^2\le x+y-2xy+\dfrac{3}{4}\left(x+y\right)^2\)

\(\Leftrightarrow\dfrac{1}{4}\left(x+y\right)^2-\left(x+y\right)\le0\)

\(\Leftrightarrow\left(x+y\right)\left[\dfrac{1}{4}\left(x+y\right)-1\right]\le0\)

\(\Leftrightarrow0\le x+y\le4\).

Do đó m = 0, n = 4.

Vậy m2 + n2 = 16. Chọn A.

Bình luận (1)
DN
Xem chi tiết
NT
25 tháng 8 2023 lúc 12:09

b: x,y tỉ lệ nghịch

=>x1*y1=x2*y2

=>x1/y2=x2/y1=k

=>x1=y2*k; x2=y1*k

x1+x2=6

=>k*(y1+y2)=6

=>\(y_1+y_2=\dfrac{6}{k}\)

c: x1/y2=x2/y1

=>x1/x2=y2/y1

=>x1/3=y2/12

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x_1}{3}=\dfrac{y_2}{12}=\dfrac{x_1+2y_2}{3+2\cdot12}=\dfrac{18}{27}=\dfrac{2}{3}\)

=>\(x_1=2;y_2=8\)

Bình luận (0)
NQ
Xem chi tiết
NH
9 tháng 7 2023 lúc 17:11

Bài 3:

a, (\(x\)+y+z)2

=((\(x\)+y) +z)2

= (\(x\) + y)2 + 2(\(x\) + y)z + z2

\(x^2\) + 2\(xy\) + y2 + 2\(xz\) + 2yz + z2

=\(x^2\) + y2 + z2 + 2\(xy\) + 2\(xz\) + 2yz

 

Bình luận (0)
NH
9 tháng 7 2023 lúc 17:14

b, (\(x-y\))(\(x^2\) + y2 + z2 - \(xy\) - yz - \(xz\))

\(x^3\) + \(xy^2\) + \(xz^2\) - \(x^2\)y - \(xyz\) - \(x^2\)z - y3 

Đến dây ta thấy xuất hiện \(x^3\) - y3 khác với đề bài, em xem lại đề bài nhé

Bình luận (0)
NH
9 tháng 7 2023 lúc 17:26

c,

(\(x\) + y + z)3 

=(\(x\) + y)3 + 3(\(x\) + y)2z + 3(\(x\)+y)z2 + z3

\(x^3\) + 3\(x^2\)y + 3\(xy^{2^{ }}\) + y3 +  3(\(x\)+y)z(\(x\) + y + z) + z3

\(x^3\) + y3 + z3 + 3\(xy\)(\(x\) + y) + 3(\(x+y\))z(\(x+y+z\))

\(x^3\) + y3 + z+ 3(\(x\) + y)( \(xy\) + z\(x\) + yz + z2)

\(x^3\) + y3 + z3 + 3(\(x\) + y){(\(xy+xz\)) + (yz + z2)}

\(x^3\) + y3 + z3 + 3(\(x\) + y){ \(x\)( y +z) + z(y+z)}

\(x^3\) + y3 + z3 + 3(\(x\) + y)(y+z)(\(x+z\)) (đpcm)

 

 

Bình luận (0)