§1. Bất đẳng thức

LA

Các thầy cô giúp dùm em với ạ

Cho 2 số không âm x, y thỏa mãn x2 + y= x+y+xy. Biết rằng tập giá trị của biểu thức S = x+ y là [m ; n]. Tính giá trị của biểu thức m2+n2

A. 16.              B. 13               C. 25                           D. 34

TH
19 tháng 12 2020 lúc 16:15

Ta có \(xy\le\dfrac{\left(x+y\right)^2}{4}\).

Do đó ta có: \(x+y+xy=x+y-2xy+3xy\le x+y-2xy+\dfrac{3}{4}\left(x+y\right)^2\)

\(\Rightarrow x^2+y^2\le x+y-2xy+\dfrac{3}{4}\left(x+y\right)^2\)

\(\Leftrightarrow\dfrac{1}{4}\left(x+y\right)^2-\left(x+y\right)\le0\)

\(\Leftrightarrow\left(x+y\right)\left[\dfrac{1}{4}\left(x+y\right)-1\right]\le0\)

\(\Leftrightarrow0\le x+y\le4\).

Do đó m = 0, n = 4.

Vậy m2 + n2 = 16. Chọn A.

Bình luận (1)

Các câu hỏi tương tự
PO
Xem chi tiết
PO
Xem chi tiết
PO
Xem chi tiết
NN
Xem chi tiết
NQ
Xem chi tiết
LT
Xem chi tiết
H24
Xem chi tiết
TS
Xem chi tiết
H24
Xem chi tiết