\(lim\dfrac{4n+5}{4n+6}.\dfrac{4n+1}{4n+2}...\dfrac{5}{6}\)
\(lim\dfrac{5n^3-3n^2+6}{4n^2-3n^3+7n}\)
lim= \(\dfrac{n^3\left(5-\dfrac{3}{n}+\dfrac{6}{n^3}\right)}{n^3\left(\dfrac{4}{n}-3+\dfrac{7}{n^2}\right)}\)
lim= \(\dfrac{5}{-3}\)
\(VT=\dfrac{1}{1.5}+\dfrac{1}{5.9}+...+\dfrac{1}{\left(4n-3\right)\left(4n+1\right)}\)
\(VT=\dfrac{1}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{4n-3}-\dfrac{1}{4n+1}\right)\)
\(VT=\dfrac{1}{4}\left(1-\dfrac{1}{4n+1}\right)\)
\(VT=\dfrac{1}{4}\left(\dfrac{4n}{4n+1}\right)\)
\(VT=\dfrac{4n}{16n+4}=\dfrac{4n}{4\left(4n+1\right)}=\dfrac{n}{4n+1}=VP\)
Xảy ra với mọi \(n\in Z^+\)
@Đặng Thị Cẩm Tú
tìm giới hạn
\(lim\left(\dfrac{3n-1}{\sqrt{4n+2}-\sqrt{4n-1}}\right)\)
Điều kiện: \(\left\{{}\begin{matrix}4n+2\ge0\\4n-1\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}n\ge-\dfrac{1}{2}\\n\ge\dfrac{1}{4}\end{matrix}\right.\)\(\Rightarrow n\ge\dfrac{1}{4}\)
Ta có: \(lim_{n\rightarrow+\infty}\left(\dfrac{3n-1}{\sqrt{4n+2}-\sqrt{4n-1}}\right)=\)
\(lim_{n\rightarrow+\infty}\left(\dfrac{3-\dfrac{1}{n}}{\sqrt{\dfrac{4}{n}+\dfrac{2}{n^2}}-\sqrt{\dfrac{4}{n}-\dfrac{1}{n^2}}}\right)=+\infty\)
CM: \(\dfrac{5}{3.7}+\dfrac{5}{7.11}+\dfrac{5}{11.15}+.....+\dfrac{3}{\left(4n-1\right)\left(4n+3\right)}=\dfrac{5n}{4n+3}\)
\(\dfrac{5}{3\cdot7}+\dfrac{5}{7\cdot11}+\dfrac{5}{11\cdot15}+...+\dfrac{5}{\left(4n-1\right)\left(4n+3\right)}\\ =\dfrac{5}{4}\cdot\left(\dfrac{4}{3\cdot7}+\dfrac{4}{7\cdot11}+\dfrac{4}{11\cdot15}+...+\dfrac{4}{\left(4n-1\right)\left(4n+3\right)}\right)\\ =\dfrac{5}{4}\cdot\left(\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{15}+...+\dfrac{1}{4n-1}-\dfrac{1}{4n+3}\right)\\ =\dfrac{5}{4}\cdot\left(\dfrac{1}{3}-\dfrac{1}{4n+3}\right)\\ =\dfrac{5}{4}\cdot\dfrac{4n}{12n+9}\\ =\dfrac{5n}{12n+9}\)
Mk thực sự nghĩ đề hình như bị sai hay sao ấy!
\(CMR,S=\dfrac{1}{2^2}-\dfrac{1}{2^4}+\dfrac{1}{2^6}-...+\dfrac{1}{2^{4n-2}}+\dfrac{1}{2^{4n}}+...+\dfrac{1}{2^{20002}}-\dfrac{1}{2^{2004}}< 0,2\)
Tính các giới hạn sau
1,Lim\(\left(\dfrac{2n^3}{2n^2+3}+\dfrac{1-5n^2}{5n+1}\right)\)
2,a,Lim\(\left(\sqrt{n^2+n}-\sqrt{n^2+2}\right)\)
b,Lim\(\dfrac{\sqrt{n^4+3n-2}}{2n^2-n+3}\)
c,Lim\(\dfrac{\sqrt{n^2-4n}-\sqrt{4n^2+1}}{\sqrt{3n^2+1}-n}\)
\(a=\lim\left(\dfrac{2n^3\left(5n+1\right)+\left(2n^2+3\right)\left(1-5n^2\right)}{\left(2n^2+3\right)\left(5n+1\right)}\right)\)
\(=\lim\left(\dfrac{2n^3-13n^2+3}{\left(2n^2+3\right)\left(5n+1\right)}\right)=\lim\dfrac{2-\dfrac{13}{n}+\dfrac{3}{n^3}}{\left(2+\dfrac{3}{n^2}\right)\left(5+\dfrac{1}{n}\right)}=\dfrac{2}{2.5}=\dfrac{1}{5}\)
\(b=\lim\left(\dfrac{n-2}{\sqrt{n^2+n}+\sqrt{n^2+2}}\right)=\lim\dfrac{1-\dfrac{2}{n}}{\sqrt{1+\dfrac{1}{n}}+\sqrt{1+\dfrac{2}{n}}}=\dfrac{1}{2}\)
\(c=\lim\dfrac{\sqrt{1+\dfrac{3}{n^3}-\dfrac{2}{n^4}}}{2-\dfrac{2}{n}+\dfrac{3}{n^2}}=\dfrac{1}{2}\)
\(d=\lim\dfrac{\sqrt{1-\dfrac{4}{n}}-\sqrt{4+\dfrac{1}{n^2}}}{\sqrt{3+\dfrac{1}{n^2}}-1}=\dfrac{1-2}{\sqrt{3}-1}=-\dfrac{1+\sqrt{3}}{2}\)
1) tính \(\lim\limits_{n\rightarrow\infty}\dfrac{6n-8}{n-1}\)
2) tính \(\lim\limits_{n\rightarrow\infty}\dfrac{n^2+5n-3}{4n^3-2n+5}\)
1: \(\lim\limits_{n\rightarrow\infty}\dfrac{6n-8}{n-1}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{6-\dfrac{8}{n}}{1-\dfrac{1}{n}}=\dfrac{6-0}{1-0}\)
\(=\dfrac{6}{1}=6\)
2: \(\lim\limits_{n\rightarrow\infty}\dfrac{n^2+5n-3}{4n^3-2n+5}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{n^2\left(1+\dfrac{5}{n}-\dfrac{3}{n^2}\right)}{n^3\left(4-\dfrac{2}{n^2}+\dfrac{5}{n^3}\right)}\)
\(=\lim\limits_{n\rightarrow\infty}\left(\dfrac{1}{n}\cdot\dfrac{1+\dfrac{5}{n}-\dfrac{3}{n^2}}{\left(4-\dfrac{2}{n^2}+\dfrac{5}{n^3}\right)}\right)\)
=0
\(\dfrac{1}{2^2}-\dfrac{1}{2^4}+\dfrac{1}{2^6}-...+\dfrac{1}{2^{4n-2}}-\dfrac{1}{2^{4n}}+...+\dfrac{1}{2^{2002}}-\dfrac{1}{2^{2004}}\)<0,2
Đặt :
\(A=\dfrac{1}{2^2}-\dfrac{1}{2^4}+\dfrac{1}{2^6}-......+\dfrac{1}{2^{4n-2}}-\dfrac{1}{2^{4n}}+.........+\dfrac{1}{2^{2002}}-\dfrac{1}{2^{2004}}\)
\(\Leftrightarrow2^2A=2^2\left(\dfrac{1}{2^2}-\dfrac{1}{2^4}+\dfrac{1}{2^6}-.......+\dfrac{1}{2^{4n-2}}-\dfrac{1}{2^{4n}}+......+\dfrac{1}{2^{2002}}-\dfrac{1}{2^{2004}}\right)\)
\(\Leftrightarrow4A=1-\dfrac{1}{2^2}+\dfrac{1}{2^4}-\dfrac{1}{2^6}+.......-\dfrac{1}{2^{4n-2}}+\dfrac{1}{2^{4n}}-.......-\dfrac{1}{2^{2002}}\)
\(\Leftrightarrow4A+A=\left(1-\dfrac{1}{2^2}+\dfrac{1}{2^4}-\dfrac{1}{2^6}+.......-\dfrac{1}{2^{4n-2}}+\dfrac{1}{2^{4n}}-......-\dfrac{1}{2^{2002}}\right)+\left(\dfrac{1}{2^2}-\dfrac{1}{2^4}+......+\dfrac{1}{2^{4n-2}}-\dfrac{1}{2^{4n}}+......+\dfrac{1}{2^{2002}}-\dfrac{1}{2^{2004}}\right)\)
\(\Leftrightarrow5A=1-\dfrac{1}{2^{2004}}\)
\(\Leftrightarrow A=\left(1-\dfrac{1}{2^{2004}}\right):5\)
\(\Leftrightarrow A=\dfrac{1}{5}-\dfrac{1}{5}.\dfrac{1}{2^{2004}}< \dfrac{1}{5}=0,2\left(đpcm\right)\)
biết \(lim\dfrac{\sqrt{\left(3-4n\right)^2+1}+an-1}{\sqrt{n^2+4n+1}+an}=2\). tìm a
\(\lim\dfrac{\sqrt{\left(3-4n\right)^2+1}+an-1}{\sqrt{n^2+4n+1}+an}=\lim\dfrac{\sqrt{\left(\dfrac{3}{n}-4\right)^2+\dfrac{1}{n}}+a-\dfrac{1}{n}}{\sqrt{1+\dfrac{4}{n}+\dfrac{1}{n^2}}+an}\)
\(=\dfrac{4+a}{1+a}=2\Leftrightarrow4+a=2a+2\Rightarrow a=2\)