\(VT=\dfrac{1}{1.5}+\dfrac{1}{5.9}+...+\dfrac{1}{\left(4n-3\right)\left(4n+1\right)}\)
\(VT=\dfrac{1}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{4n-3}-\dfrac{1}{4n+1}\right)\)
\(VT=\dfrac{1}{4}\left(1-\dfrac{1}{4n+1}\right)\)
\(VT=\dfrac{1}{4}\left(\dfrac{4n}{4n+1}\right)\)
\(VT=\dfrac{4n}{16n+4}=\dfrac{4n}{4\left(4n+1\right)}=\dfrac{n}{4n+1}=VP\)
Xảy ra với mọi \(n\in Z^+\)
@Đặng Thị Cẩm Tú