Violympic toán 7

NH

\(\dfrac{1}{2^2}-\dfrac{1}{2^4}+\dfrac{1}{2^6}-...+\dfrac{1}{2^{4n-2}}-\dfrac{1}{2^{4n}}+...+\dfrac{1}{2^{2002}}-\dfrac{1}{2^{2004}}\)<0,2

NH
20 tháng 3 2018 lúc 19:38

Đặt :

\(A=\dfrac{1}{2^2}-\dfrac{1}{2^4}+\dfrac{1}{2^6}-......+\dfrac{1}{2^{4n-2}}-\dfrac{1}{2^{4n}}+.........+\dfrac{1}{2^{2002}}-\dfrac{1}{2^{2004}}\)

\(\Leftrightarrow2^2A=2^2\left(\dfrac{1}{2^2}-\dfrac{1}{2^4}+\dfrac{1}{2^6}-.......+\dfrac{1}{2^{4n-2}}-\dfrac{1}{2^{4n}}+......+\dfrac{1}{2^{2002}}-\dfrac{1}{2^{2004}}\right)\)

\(\Leftrightarrow4A=1-\dfrac{1}{2^2}+\dfrac{1}{2^4}-\dfrac{1}{2^6}+.......-\dfrac{1}{2^{4n-2}}+\dfrac{1}{2^{4n}}-.......-\dfrac{1}{2^{2002}}\)

\(\Leftrightarrow4A+A=\left(1-\dfrac{1}{2^2}+\dfrac{1}{2^4}-\dfrac{1}{2^6}+.......-\dfrac{1}{2^{4n-2}}+\dfrac{1}{2^{4n}}-......-\dfrac{1}{2^{2002}}\right)+\left(\dfrac{1}{2^2}-\dfrac{1}{2^4}+......+\dfrac{1}{2^{4n-2}}-\dfrac{1}{2^{4n}}+......+\dfrac{1}{2^{2002}}-\dfrac{1}{2^{2004}}\right)\)

\(\Leftrightarrow5A=1-\dfrac{1}{2^{2004}}\)

\(\Leftrightarrow A=\left(1-\dfrac{1}{2^{2004}}\right):5\)

\(\Leftrightarrow A=\dfrac{1}{5}-\dfrac{1}{5}.\dfrac{1}{2^{2004}}< \dfrac{1}{5}=0,2\left(đpcm\right)\)

Bình luận (1)

Các câu hỏi tương tự
HD
Xem chi tiết
HP
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
TK
Xem chi tiết
HT
Xem chi tiết
NT
Xem chi tiết
TT
Xem chi tiết
TN
Xem chi tiết