Những câu hỏi liên quan
TT
Xem chi tiết
KN
Xem chi tiết
TL
31 tháng 7 2021 lúc 20:40

`f'(x) = x^2 - 4x+m`

`f'(x) >=0 <=>x^2-4x+m>=0`

`<=> \Delta' >=0`

`<=> 2^2-1.m>=0`

`<=> m<=4`

Vậy....

Bình luận (0)
PD
Xem chi tiết
RH
2 tháng 10 2021 lúc 22:25

Gửi bạnundefinedundefined

Bình luận (0)
BK
Xem chi tiết
H24
15 tháng 5 2021 lúc 17:47

\(\text{f(x)}\)\(\text{>0}\)\(\text{⇔}\)\(\text{2x}\)2\(\text{-3x+1}\)\(>0\)\(\left\{{}\begin{matrix}x>1\\x< \dfrac{1}{2}\end{matrix}\right.\)

x(;\(\dfrac{1}{2}\))(1;+)

 

Bình luận (0)
AD
Xem chi tiết
CH
Xem chi tiết
NH
19 tháng 2 2020 lúc 12:04

P/s: Câu c sủa đề đi, như đề cũ không chứng minh được đâu

\(a)\) \(y=f\left(x\right)=4x^2-5\)

\(\Leftrightarrow f\left(3\right)=4.3^2-5=31\)

\(\Leftrightarrow f\left(-\frac{1}{2}\right)=4.\left(-\frac{1}{2}\right)^2-5=-4\)

\(b)\) \(f\left(x\right)=-1\)

\(\Leftrightarrow4x^2-5=-1\)

\(\Leftrightarrow4x^2=4\)

\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=1\end{cases}}\)

\(c)\) Đặt \(f\left(x\right)=kx\Leftrightarrow-f\left(x\right)=-kx\)

Và \(f\left(-x\right)=k\left(-x\right)=-kx\)

Do đó chứng minh được \(-f\left(x\right)=f\left(-x\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
BT
Xem chi tiết
LS
Xem chi tiết
MR
Xem chi tiết