giải phương trình
\(\dfrac{4x}{x^2-8x+7}+\dfrac{5x}{x^2-10x+7}=-1\)
Giải phương trình: \(\dfrac{4}{4x^2-8x+7}+\dfrac{3}{4x^2-10x+7}=\dfrac{1}{x}\)
ĐKXĐ: \(x\ne0\)
Phương trình tương đương:
\(\dfrac{4}{4x-8+\dfrac{7}{x}}+\dfrac{3}{4x-10+\dfrac{7}{x}}=1\)
Đặt \(4x-10+\dfrac{7}{x}=t\)
\(\Rightarrow\dfrac{4}{t+2}+\dfrac{3}{t}=1\)
\(\Rightarrow4t+3\left(t+2\right)=t\left(t+2\right)\)
\(\Leftrightarrow t^2-5t-6=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}4x-10+\dfrac{7}{x}=-1\\4x-10+\dfrac{7}{x}=6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}4x^2-9x+7=0\left(vn\right)\\4x^2-16x+7=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
Giải phương trình
a) \(\dfrac{3}{5x-1}\)+ \(\dfrac{2}{3-5x}\)=\(\dfrac{4}{\left(1-5x\right)\left(x-3\right)}\)
b) \(\dfrac{5-x}{4x^2-8x}\)+\(\dfrac{7}{8x}\)=\(\dfrac{x-1}{2x\left(x-2\right)}\)+\(\dfrac{1}{8x-16}\)
a:Sửa đề: \(\dfrac{3}{5x-1}+\dfrac{2}{3-x}=\dfrac{4}{\left(1-5x\right)\left(x-3\right)}\)
=>3x-9-10x+2=-4
=>-7x-7=-4
=>-7x=3
=>x=-3/7
b: =>\(\dfrac{5-x}{4x\left(x-2\right)}+\dfrac{7}{8x}=\dfrac{x-1}{2x\left(x-2\right)}+\dfrac{1}{8\left(x-2\right)}\)
=>\(2\left(5-x\right)+7\left(x-2\right)=4\left(x-1\right)+x\)
=>10-2x+7x-14=4x-4+x
=>5x-4=5x-4
=>0x=0(luôn đúng)
Vậy: S=R\{0;2}
Giải phương trình sau:
b)2( x +1) = 5x - 7
c) 3 - 4x(25 - 2x) = 8x2 + x - 300
d) \(\dfrac{10x+3}{12}=1+\dfrac{6+8x}{9}\)
`b,2(x+1)=5x-7`
`=>2x+2=5x-7`
`=>3x=9`
`=>x=3`
`c,3-4x(25-2x)=8x^2+x-300`
`<=>3-100x+8x^2=8x^2+x-300`
`<=>101x=303`
`<=>x=3`
`d,(10x+3)/12=1+(6+8x)/9`
`<=>(10x+3)/12=(8x+15)/9`
`<=>30x+9=32x+60`
`<=>2x=-51`
`<=>x=-51/2`
Giải phương trình sau
a, 8x-3=0
b, -5x+7=-3x-9
c, (x+3).(4x-10)=x(x-4)
e,\(\dfrac{1}{x-2}+4=\dfrac{x+3}{x-2}\)
a) 8x-3=0
⇔8x=3
⇔x=\(\dfrac{3}{8}\)
Vậy...
b) -5x+7=-3x-9
⇔-5x+3x=-9-7
⇔-2x=-16
⇔x=8
Vậy...
e)
\(\dfrac{1}{x-2}+4=\dfrac{x+3}{x-2}\)
⇔\(\dfrac{1}{x-2}-\dfrac{x+3}{x-2}=4\)
⇔\(\dfrac{-x-2}{x-2}=4\)
⇔\(x+2=4x-8\)
⇔\(-3x=-10\)
⇔\(x=\dfrac{10}{3}\)
Giải các hệ phương trình sau
f.{ (2x - y) (x + 3y) = 4
{ (5x + y) (x + 3y) = 24
g.{ \(\dfrac{8x-5y-3}{7}+\dfrac{11y-4x-7}{5}=12\)
{ \(\dfrac{9x+4y-13}{5}+\dfrac{3\left(x-2\right)}{4}=15\)
h.{\(\dfrac{1}{x}+\dfrac{1}{y}=2\)
{\(\dfrac{3}{x}-\dfrac{4}{y}=-1\)
h) \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=2\\\dfrac{3}{x}-\dfrac{4}{y}=-1\end{matrix}\right.\)\(\left(1\right)\)\(\left(đk:x,y\ne0\right)\)
Đặt \(a=\dfrac{1}{x},b=\dfrac{1}{y}\)
\(\left(1\right)\Leftrightarrow\) \(\left\{{}\begin{matrix}a+b=2\\3a-4b=-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3a+3b=6\\3a-4b=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=2\\7b=7\end{matrix}\right.\)\(\Leftrightarrow a=b=1\)
Thay a,b:
\(\Leftrightarrow\dfrac{1}{x}=\dfrac{1}{y}=1\Leftrightarrow x=y=1\left(tm\right)\)
Giải các phương trình sau:
\(a.\dfrac{5x-2}{3}=\dfrac{5-3x}{2}\)
\(b.\dfrac{10x+3}{12}=1+\dfrac{6+8x}{9}\)
\(c.2\left(x+\dfrac{3}{5}\right)=5-\left(\dfrac{13}{5}+x\right)\)
\(d.\dfrac{7}{8}x-5\left(x-9\right)=\dfrac{20x+1,5}{6}\)
\(e.\dfrac{7x-1}{6}+2x=\dfrac{16-x}{5}\)
\(f.\dfrac{x+4}{5}-x+4=\dfrac{x}{3}-\dfrac{x-2}{2}\)
a: =>10x-4=15-9x
=>19x=19
hay x=1
b: \(\Leftrightarrow3\left(10x+3\right)=36+4\left(8x+6\right)\)
=>30x+9=36+32x+24
=>30x-32x=60-9
=>-2x=51
hay x=-51/2
c: \(\Leftrightarrow2x+\dfrac{6}{5}=5-\dfrac{13}{5}-x\)
=>3x=6/5
hay x=2/5
d: \(\Leftrightarrow\dfrac{7x}{8}-\dfrac{5\left(x-9\right)}{1}=\dfrac{20x+1.5}{6}\)
\(\Leftrightarrow21x-120\left(x-9\right)=4\left(20x+1.5\right)\)
=>21x-120x+1080=80x+60
=>-179x=-1020
hay x=1020/179
e: \(\Leftrightarrow5\left(7x-1\right)+60x=6\left(16-x\right)\)
=>35x-5+60x=96-6x
=>95x+6x=96+5
=>x=1
f: \(\Leftrightarrow6\left(x+4\right)+30\left(-x+4\right)=10x-15\left(x-2\right)\)
=>6x+24-30x+120=10x-15x+30
=>-24x+96=-5x+30
=>-19x=-66
hay x=66/19
Giải phương trình:
\(\frac{4x}{x^2-8x+7}+\frac{5x}{x^2-10x+7}=-1\)
Xét x=0 ko là nghiệm của pt
Xét x\(\ne\)0, chia cả tử và mẫu của 2 phân thức cho x ta đc:
\(\frac{4}{x-8-\frac{7}{x}}+\frac{5}{x-10+\frac{7}{x}}=-1\)
đặt \(x-\frac{7}{x}=t\), pt trở thành \(\frac{4}{t-8}+\frac{5}{t-10}=-1\)
đén đây dễ dàng tìm t rồi tìm x
xét x = 0 là ngiệm của pt
xét \(x\ne0\),chia cả tử và mẫu của 2 phân thức cho x ta có:
\(\frac{4}{x-8-\frac{7}{x}}+\frac{5}{x-10+\frac{7}{x}}=-1\)
ta đặt: \(x-\frac{7}{x}=t\), pt trở thành \(\frac{4}{t-8}+\frac{5}{t-10}=-1\)
\(\Rightarrow\frac{4}{t}-\frac{4}{8}+\frac{5}{t}-\frac{5}{10}=-1\)
\(\Rightarrow\frac{4}{t}+\frac{5}{t}-\frac{1}{2}-\frac{1}{2}=-1\)
\(\Rightarrow\frac{9}{t}-1=-1\)
\(\Rightarrow\frac{9}{t}=-1+1=0\)
\(\Rightarrow9:t=0\)
vậy t không thỏa mãn
Namikaze Minato hướng làm đúng rồi nhưng bài làm ở chỗ xét thứ 2 sai nhé!
Khi chia cả tử và mẫu của \(\frac{4x}{x^2-8x+7}\) ta được:
\(\frac{4x}{x^2-8x+7}=\frac{4}{x-8+\frac{7}{x}}\) chứ không phải: \(\frac{4}{x-8-\frac{7}{x}}\) nhé!
Từ đó dẫn đến bài làm sai.
bài 3: giải phương trình
a) \(\dfrac{5x-7
}{3}=\dfrac{5-3x}{2}\)
b) \(\dfrac{10x+3}{12}=1+\dfrac{6+8x}{9}\)
c) \(\dfrac{7x-1}{6}+2x=\dfrac{16-x}{5}\)
d) \(4\left(0,5-1,5x\right)=-\dfrac{5x-6}{3}\)
a: =>10x-14=15-9x
=>19x=29
hay x=29/19
b: \(\Leftrightarrow3\left(10x+3\right)=36+4\left(8x+6\right)\)
=>30x+9=36+32x+24
=>30x+9=32x+60
=>-2x=51
hay x=-51/2
c: \(\Leftrightarrow5\left(7x-1\right)+60x=6\left(16-x\right)\)
=>35x-5+60x=96-6x
=>101x=101
hay x=1
d: \(\Leftrightarrow12\left(\dfrac{1}{2}-\dfrac{3}{2}x\right)=-5x+6\)
\(\Leftrightarrow6-18x+5x-6=0\)
=>-13x=0
hay x=0
\(a,\dfrac{5x-7}{3}=\dfrac{5-3x}{2}\\ \Leftrightarrow2\left(5x-7\right)=3\left(5-3x\right)\\ \Leftrightarrow10x-14=15-9x\\ \Leftrightarrow10x-14-15+9x=0\\ \Leftrightarrow19x-19=0\\ \Leftrightarrow x=1\)
\(b,\dfrac{10x+3}{12}=1+\dfrac{6+8x}{9}\\ \Leftrightarrow\dfrac{3\left(10x+3\right)}{36}=\dfrac{36}{36}+\dfrac{4\left(6+8x\right)}{36}\\ \Leftrightarrow30x+9=36+24+32x\\ \Leftrightarrow36+24+32x-30x-9=0\\ \Leftrightarrow2x+51=0\\ \Leftrightarrow x=-\dfrac{51}{2}\)
\(c,\dfrac{7x-1}{6}+2x=\dfrac{16-x}{5}\\ \Leftrightarrow\dfrac{7x-1+12x}{6}=\dfrac{16-x}{5}\\ \Leftrightarrow5\left(19x-1\right)=6\left(16-x\right)\\ \Leftrightarrow95x-5=96-6x\\ \Leftrightarrow95x-5-96+6x=0\\ \Leftrightarrow101x-101=0\\ \Leftrightarrow x=1\)
\(d,4\left(0,5-1,5x\right)=-\dfrac{5x-6}{3}\\ \Leftrightarrow12\left(0,5-1,5x\right)=6-5x\\ \Leftrightarrow6-18x=6-5x\\ \Leftrightarrow6-5x-6+18x=0\\ \Leftrightarrow13x=0\\ \Leftrightarrow x=0\)
Bài 4: Giải các phương trình sau
a) 4(x+5)(x+6)(x+10)(x+12)=\(3x^2\)
b) \(\frac{1}{x^2-3x+3}+\frac{2}{x^2-3x+4}=\frac{6}{x^2-3x+5}\)
c) \(\frac{4x}{4x^2-8x+7}+\frac{3x}{4x^2-10x+7}=1\)
d) \(\dfrac{2x}{2x^2-5x+3}+\dfrac{13x}{2x^2+x+3}=6\)