Rút gọn:
\(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}-\sqrt{2}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Thực hiện phép tính ( rút gọn biểu thức )
a) \(\sqrt{2}\left(\sqrt{4+\sqrt{7}}+\sqrt{4-\sqrt{7}}\right)\)
b) \(\sqrt{2-\sqrt{3}}\) - \(\sqrt{2+\sqrt{3}}\)
a) \(\sqrt{2}\left(\sqrt{4+\sqrt{7}}+\sqrt{4-\sqrt{7}}\right)\)
\(=\sqrt{2\cdot\left(4+\sqrt{7}\right)}+\sqrt{2\cdot\left(4-\sqrt{7}\right)}\)
\(=\sqrt{8+2\sqrt{7}}+\sqrt{8-2\sqrt{7}}\)
\(=\sqrt{\left(\sqrt{7}\right)^2+2\cdot\sqrt{7}\cdot1+1^2}+\sqrt{\left(\sqrt{7}\right)^2-2\cdot\sqrt{7}\cdot1+1^2}\)
\(=\sqrt{\left(\sqrt{7}+1\right)^2}+\sqrt{\left(\sqrt{7}-1\right)^2}\)
\(=\left|\sqrt{7}+1\right|+\left|\sqrt{7}-1\right|\)
\(=\sqrt{7}+1+\sqrt{7}-1\)
\(=2\sqrt{7}\)
b) \(\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}\)
\(=\dfrac{\sqrt{2}\cdot\left(\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}\right)}{\sqrt{2}}\)
\(=\dfrac{\sqrt{2\cdot\left(2-\sqrt{3}\right)}-\sqrt{2\cdot\left(2+\sqrt{3}\right)}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{4-2\sqrt{3}}-\sqrt{4+2\sqrt{3}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{\left(\sqrt{3}\right)^2-2\cdot\sqrt{3}\cdot1+1^2}-\sqrt{\left(\sqrt{3}\right)^2+2\cdot\sqrt{3}\cdot1+1^2}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{\left(\sqrt{3}+1\right)^2}}{\sqrt{2}}\)
\(=\dfrac{\left|\sqrt{3}-1\right|-\left|\sqrt{3}+1\right|}{\sqrt{2}}\)
\(=\dfrac{\sqrt{3}-1-\sqrt{3}-1}{ }\)
\(=-\dfrac{2}{\sqrt{2}}\)
\(=-\sqrt{2}\)
Rút gọn:
\(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}-\sqrt{2}\)
\(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}-\sqrt{2}=0\)
:) trình bày các bước đi bạn :)) ai lại làm thế :v Bấm casio à :)
\(H=\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)
\(H^2=4+\sqrt{7}+4-\sqrt{7}+2\sqrt{\left(4+\sqrt{7}\right)\left(4-\sqrt{7}\right)}\)
\(=8-2\sqrt{16-7}=8-6=2\)
\(\Rightarrow H=\sqrt{2}\Rightarrow\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}-2=0\)
Vậy .....................
rút gọn A= \(\sqrt{4+\sqrt{7}}\)-\(\sqrt{4-\sqrt{7}}\)
\(A=\dfrac{\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}}{\sqrt{2}}=\dfrac{\sqrt{7}+1-\sqrt{7}+1}{\sqrt{2}}=\sqrt{2}\)
:) trình bày các bước đi bạn
:)) ai lại làm thế :v Bấm casio à :)
H=√4+√7−√4−√7H=4+7−4−7
H2=4+√7+4−√7+2√(4+√7)(4−√7)H2=4+7+4−7+2(4+7)(4−7)
=8−2√16−7=8−6=2=8−216−7=8−6=2
⇒H=√2⇒√4+√7−√4−√7−2=0
Rút gọn biểu thức sau:
\(\dfrac{\left(4+\sqrt{7}\right).\sqrt{4-\sqrt{7}}}{\sqrt{4+\sqrt{7}}}\)
\(\left(4+\sqrt{7}\right)\cdot\dfrac{\sqrt{4-\sqrt{7}}}{\sqrt{4+\sqrt{7}}}\)
\(=\left(4+\sqrt{7}\right)\cdot\dfrac{\sqrt{7}-1}{\sqrt{7}+1}\)
\(=\dfrac{\left(\sqrt{7}+1\right)^2\cdot\left(\sqrt{7}-1\right)}{\sqrt{7}+1}\cdot\dfrac{1}{2}\)
\(=\dfrac{6}{2}=3\)
\(=\dfrac{\left(8+2\sqrt{7}\right)\sqrt{8-2\sqrt{7}}}{2\sqrt{8+2\sqrt{7}}}=\dfrac{\left(\sqrt{7}+1\right)^2\sqrt{\left(\sqrt{7}-1\right)^2}}{2\sqrt{\left(\sqrt{7}+1\right)^2}}\)
\(=\dfrac{\left(\sqrt{7}+1\right)^2\left(\sqrt{7}-1\right)}{2\left(\sqrt{7}+1\right)}=\dfrac{\left(\sqrt{7}+1\right)\left(\sqrt{7}-1\right)}{2}\)
\(=\dfrac{7-1}{2}=3\)
rút gọn biểu thức
a, \(\dfrac{1}{\sqrt{7-\sqrt{24}+1}}-\dfrac{1}{\sqrt{7+\sqrt{24}+1}}\)
b,\(\sqrt{\dfrac{3+\sqrt{5}}{3-\sqrt{5}}}+\sqrt{\dfrac{3-\sqrt{5}}{3+\sqrt{5}}}\)
c,\(\dfrac{4+\sqrt{7}}{3\sqrt{2}+\sqrt{4}+\sqrt{7}}+\dfrac{4-\sqrt{7}}{3\sqrt{7}-\sqrt{4}-\sqrt{7}}\)
b) Ta có: \(\sqrt{\dfrac{3+\sqrt{5}}{3-\sqrt{5}}}+\sqrt{\dfrac{3-\sqrt{5}}{3+\sqrt{5}}}\)
\(=\sqrt{\dfrac{\left(3+\sqrt{5}\right)^2}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}}+\sqrt{\dfrac{\left(3-\sqrt{5}\right)^2}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}}\)
\(=\dfrac{3+\sqrt{5}}{2}+\dfrac{3-\sqrt{5}}{2}\)
\(=\dfrac{3+3}{2}=\dfrac{6}{2}=3\)
Rút gọn biểu thức
\(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)
√4−√7−√4+√7+√7=√2(√4−√7−√4+√7+√7)√2=√8−2√7−√8+2√7+√14√2=√7−2√7+1−√7+2√7+1+√14√2=√(√
Lời giải:
\(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}=\sqrt{\frac{8-2\sqrt{7}}{2}}-\sqrt{\frac{8+2\sqrt{7}}{2}}=\sqrt{\frac{(\sqrt{7}-1)^2}{2}}-\sqrt{\frac{(\sqrt{7}+1)^2}{2}}\)
\(=\frac{|\sqrt{7}-1|}{\sqrt{2}}-\frac{|\sqrt{7}+1|}{\sqrt{2}}=\frac{\sqrt{7}-1-(\sqrt{7}+1)}{\sqrt{2}}=\frac{-2}{\sqrt{2}}=-\sqrt{2}\)
Rút gọn các biểu thức :
a) \(\sqrt{\left(4-\sqrt{15}\right)^2}+\sqrt{15}\)
b) \(\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)
c)\(\sqrt{29+12\sqrt{5}}-\sqrt{29-12\sqrt{5}}\)
a: \(\sqrt{\left(4-\sqrt{15}\right)^2}+\sqrt{15}\)
\(=4-\sqrt{15}+\sqrt{15}=4\)
b: \(\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)
\(=2+\sqrt{3}-2+\sqrt{3}\)
\(=2\sqrt{3}\)
c: \(\sqrt{29+12\sqrt{5}}-\sqrt{29-12\sqrt{5}}\)
\(=\sqrt{\left(2\sqrt{5}+3\right)^2}-\sqrt{\left(2\sqrt{5}-3\right)^2}\)
\(=2\sqrt{5}+3-2\sqrt{5}+3=6\)
Rút gọn các biểu thức sau:
D = \(\sqrt{9+4\sqrt{2}}-3\)
E = \(\sqrt{4+2\sqrt{3}}-\sqrt{13+4\sqrt{3}}\)
F = \(\sqrt{7-4\sqrt{3}}+\sqrt{4-2\sqrt{3}}\)
a: \(=2\sqrt{2}+1-3=2\sqrt{2}-2\)
b: \(=\sqrt{3}+1-2\sqrt{3}-1=-\sqrt{3}\)
c: \(=2-\sqrt{3}+\sqrt{3}-1=1\)
Rút gọn biểu thức:
1) \(\sqrt{9-4\sqrt{5}}+\sqrt{\left(25+1\right)^2}\)
2) \(\dfrac{x^2-5}{x+\sqrt{5}}\)
3) \(\dfrac{\sqrt{x^2-2x+1}}{x-1}\)
4) \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)
1)\(=\sqrt{\left(\sqrt{5}-2\right)^2}+\sqrt{26^2}=\sqrt{5}-2+26=24-\sqrt{5}\)
2) \(=\dfrac{\left(x-\sqrt{5}\right)\left(x+\sqrt{5}\right)}{x+\sqrt{5}}=x-\sqrt{5}\)
3) \(=\dfrac{\sqrt{\left(x-1\right)^2}}{x-1}=\dfrac{\left|x-1\right|}{x-1}\)\(=\left[{}\begin{matrix}1\left(x>1\right)\\-1\left(x< 1\right)\end{matrix}\right.\)
4) \(=\sqrt{\left(\sqrt{\dfrac{7}{2}}+\sqrt{\dfrac{1}{2}}\right)^2}-\sqrt{\left(\sqrt{\dfrac{7}{2}}-\sqrt{\dfrac{1}{2}}\right)^2}=\sqrt{\dfrac{7}{2}}+\sqrt{\dfrac{1}{2}}-\sqrt{\dfrac{7}{2}}+\sqrt{\dfrac{1}{2}}=2\sqrt{\dfrac{1}{2}}=\sqrt{2}\)
2. \(\dfrac{x^2-5}{x+\sqrt{5}}=\dfrac{x^2-\left(\sqrt{5}\right)^2}{x+\sqrt{5}}=\dfrac{\left(x-\sqrt{5}\right)\left(x+\sqrt{5}\right)}{x+\sqrt{5}}=x-\sqrt{5}\)
3. \(\dfrac{\sqrt{x^2-2x+1}}{x-1}=\dfrac{\sqrt{x^2-2.x.1+1^2}}{x-1}=\dfrac{\sqrt{\left(x-1\right)^2}}{x-1}=\dfrac{|x-1|}{x-1}=\left[{}\begin{matrix}x-1>0\left(x>1\right)\\x-1< 0\left(x< 1\right)\end{matrix}\right.=\left[{}\begin{matrix}=1\\=\dfrac{x+1}{x-1}\end{matrix}\right.\)
Rút gọn
A=\(\sqrt{8+2\sqrt{7}}+\sqrt{8-2\sqrt{7}}\)7
B=\(\sqrt{9+4\sqrt{5}}+\sqrt{9-4\sqrt{5}}\)
A= \(\sqrt{8+2\sqrt{7}}+\sqrt{8-2\sqrt{7}}\)=\(\sqrt{\left(\sqrt{7}+1\right)^2}+\sqrt{\left(\sqrt{7}-1\right)^2}=\)\(1+\sqrt{7}+\sqrt{7}-1=2\sqrt{7}\)
\(B=\sqrt{9+4\sqrt{5}}+\sqrt{9-4\sqrt{5}}\)
=\(\sqrt{\left(\sqrt{5}+2\right)^2}+\sqrt{\left(\sqrt{5}-2\right)^2}=\)\(\sqrt{5}+2+\sqrt{5}-2=2\sqrt{5}\)