cho M=((x^2-1)/(x^4-x^2+1)-1/(x^2+1))(x^4+(1-x^4)/(1+x^2)) a) rut gon b)tim min
choP=(1/(x-2)-x^2/(8-x^3)*(x^2+2x+4)/(x+2)0/1/(x^2-4) tim DKXD va rut gon b tim Min p c tim x nguyen de p chia het cho x^2+1
B1: rut gon bieu thuc
a, (x+y)^2-4(x-y)^2
b, 2(x-y)(x+y)+(x+y)^2+(x-y)^2
B2: tim X
a, (2X-1)^2-4(X+2)^2=9
b, 3(X-1)^2-3X(X-5)=21
B3: Cho bieu thuc
M=(x+3)^3-(x-1)^3+12x(x-1)
a, Rut gon bieu thuc tren
b, Tinh gia tri M tai x=-2/3
c, Tim x de M=16
1)a)=>x2+y2+2xy-4(x2-y2-2xy)
=>x2+y2+2xy-4.x2+4y2+8xy
=>-3.x2+5y2+10xy
1) CMR: 543-54 khong la so chinh phuong
2) Tim x:
2(x-2).(x+3)-x2+4=0
3) Rut gon
a)2(x+1)2-3(x-1)2+(x+2).(5-x)
b)(3x-1)3+(3x-1)3-6x2+9
4) A= (x-5).(x+2)+3.(x-2).(x+2)-(3x-1)2+5x2
a) rut gon A
b) tinh a khi x =1/2
\(2\left(x-2\right)\left(x+3\right)-x^2+4=0\)
\(2\left(x^2+3x-2x-6\right)-x^2+4=0\)
\(2x^2+6x-4x-12-x^2+4=0\)
\(x^2+2x-8=0\)
\(x^2+4x-2x-8=0\)
\(x\left(x+4\right)-2\left(x+4\right)=0\)
\(\left(x+4\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+4=0\rightarrow x=\left(-4\right)\\x-2=0\rightarrow x=2\end{cases}}\)
3/
a/ \(2\left(x+1\right)^2-3\left(x-1\right)^2+\left(x+2\right)\left(5-x\right)\)
\(=2\left(x^2+2x+1\right)-3\left(x^2-2x+1\right)+\left(5x-x^2+10-2x\right)\)
\(=2x^2+4x+2-3x^2+6x-3+5x-x^2+10-2x\)
\(=-2x^2+13x+9\)
b/ \(\left(3x-1\right)^3+\left(3x-1\right)^3-6x^2+9\)
\(=2\left(3x-1\right)^3-6x^2+9\)
\(=2\left(\left(3x\right)^3-3\left(3x\right)^2\cdot1+3\cdot3x\cdot1-1\right)-6x^2+9\)
\(=2\left(27x^3-27x^2+9x-1\right)-6x^2+9\)
\(=54x^3-54x^2+18x-2-6x^2+9\)
\(=54x^3-60x^2+18x+7\)
Số hơi dài, nên dễ tính sai -,- tính mik hay cẩu thả có j sai ibbb ạ
2) 2.(x - 2).(x + 3) - x2 + 4 = 0
<=> x2 + 2x - 8 = 0
<=> (x - 2).(x + 4) = 0
x - 2 = 0 hoặc x + 4 = 0
x = 0 + 2 x = 0 - 4
x = 2 x = -4
=> x = 2 hoặc x = -4
3) a) 2.(x + 1)2 - 3.(x - 1)2 + (x + 2).(5 - x)
= 2.(x2 + 2x + 1) - 3.(x2 - 2x + 1) + (x + 2).(5 - x)
= 2x2 + 4x + 2 - 3x2 + 6x - 3 + (x + 2).(5 - x)
= 2x2 + 4x + 2 - 3x2 + 6x - 3 + 3x - x2 + 10
= (2x2 - 3x2 - x2) + (4x + 6x + 3x) + (2 - 3 + 10)
= -2x2 + 13x + 9
b) (3x - 1)3 + (3x - 1)3 - 6x2 + 9
= 2.(3x - 1)3 - 6x2 + 9
= 2.(27x3 - 27x2 + 9x - 1) - 6x2 + 9
= 54x3 - 54x2 + 18x - 2 - 6x2 + 9
= 54x3 + (-54x2 - 6x2) + 18x + (-2 + 9)
= 54x3 - 60x + 18x + 7
4) a) A = (x - 5).(x + 2) + 3.(x - 2).(x + 2) - (3x - 1)2 + 5x2
A = (x - 5).(x + 2) + 3.(x - 2).(x + 3) - (9x2 - 6x + 1) + 5x2
A = x2 - 3x - 10 + 3x2 - 12 - (9x2 - 6x + 1) + 5x2
A = x2 - 3x - 10 + 3x2 - 12 - 9x2 + 6x - 1 + 5x2
A = (x2 + 3x2 - 9x2 + 5x2) + (-3x + 6x) + (-10 - 12 - 1)
A = 3x - 23 (1)
b) Thay x = 1/2 vào (1), ta có:
A = 3x - 23 = 3.(1/2) - 23
= 3/2 - 23
= -43/2
A khi x = 1/2 là -43/2
1) CMR: 543-54 khong la so chinh phuong
2) Tim x:
2(x-2).(x+3)-x2+4=0
3) Rut gon
a)2(x+1)2-3(x-1)2+(x+2).(5-x)
b)(3x-1)3+(3x-1)3-6x2+9
4) A= (x-5).(x+2)+3.(x-2).(x+2)-(3x-1)2+5x2
a) rut gon A
b) tinh a khi x =1/2
Cho A = (1 - 4/ √x + 1 +1/ x+1 ). x-2√x / x-1
Với x > 0 , x khác 4
a, rut gon A
b, Tìm x để A = 1/2
đề bài là như vậy hả ???
\(\left(\dfrac{1-4}{\sqrt{x}-1}+\dfrac{1}{x+1}\right).\dfrac{x-2\sqrt{x}}{x-1}\)
a:\(A=\left(1-\dfrac{4}{\sqrt{x}+1}+\dfrac{1}{x-1}\right):\dfrac{x-2\sqrt{x}}{x-1}\)
\(=\dfrac{x-1-4\sqrt{x}+4+1}{x-1}\cdot\dfrac{x-1}{x-2\sqrt{x}}\)
\(=\dfrac{\sqrt{x}-2}{\sqrt{x}}\)
b: Để A=1/2 thì \(\dfrac{\sqrt{x}-2}{\sqrt{x}}=\dfrac{1}{2}\)
=>2 căn x-4=căn x
=>x=16
cho bieu thuc Q=[(x+1/x)^3-(x^6+1/x^6)-2]:[(x+1/x)^3+x^3+1/x^3].rut gon Q va tim min Q
Cho P = \(\dfrac{x^2+5\sqrt{x^2+1}+7}{\sqrt{x^2+1}+3}\) + \(\dfrac{x^2+7\sqrt{x^2+1}+13}{\sqrt{x^2+1}+4}\)
a/ Rut gon P
b/ Tim x de P = 11
a: \(P=\dfrac{\left(\sqrt{x^2+1}\right)^2+5\sqrt{x^2+1}+6}{\sqrt{x^2+1}+3}+\dfrac{\left(\sqrt{x^2+1}^2\right)+7\sqrt{x^2+1}+12}{\sqrt{x^2+1}+4}\)
\(=\sqrt{x^2+1}+2+\sqrt{x^2+1}+3\)
\(=2\sqrt{x^2+1}+5\)
b: Để P=11 thì \(2\sqrt{x^2+1}=11-5=6\)
=>căn (x^2+1)=3
=>x^2+1=9
=>x^2=8
=>\(x=\pm2\sqrt{2}\)
A=(x+1/2x+4/x+3 -2)/ x+1/x+3-x^2-5x+3/2x
a) tim dk cua x de A dc xac dinh
b) rut gon A
cho bt: B= 10x/x2+3x-4 - 2x-3/x+4 +x+1/1-x
a) rut gon b
b) chung minh b>-3
c) tim gia tri lon nhat cua b
a: \(B=\dfrac{10x}{\left(x+4\right)\left(x-1\right)}-\dfrac{2x-3}{x+4}-\dfrac{x+1}{x-1}\)
\(=\dfrac{10x-\left(2x^2-2x-3x+3\right)-\left(x^2+5x+4\right)}{\left(x+4\right)\left(x-1\right)}\)
\(=\dfrac{10x-2x^2+5x-3-x^2-5x-4}{\left(x+4\right)\left(x-1\right)}\)
\(=\dfrac{-3x^2+10x-7}{\left(x+4\right)\left(x-1\right)}\)
\(=\dfrac{-\left(3x^2-10x+7\right)}{\left(x-1\right)\left(x+4\right)}=-\dfrac{\left(x-1\right)\left(3x-7\right)}{\left(x-1\right)\left(x+4\right)}\)
\(=\dfrac{-3x+7}{x+4}\)
b: \(B+3=\dfrac{-3x+7+3x+12}{x+4}=\dfrac{19}{x+4}>0\)
=>B>-3