cho tam giác ABC vuông tại A, đường cao AH. cmr: AB.AC=BC.AH
Cho tam giác ABC vuông tại A, đường cao AH (H thuộc BC), AH=6cm; BC=10cm. a) Tính diện tích tam giác ABC b) Tam giác ABH đồng dạng với tam giác CBA c) AB.AC=BC.AH
a) \(S_{ABC}=\dfrac{1}{2}.AH.BC=\dfrac{1}{2}.6.10=30\left(cm^2\right)\)
b) Xét \(\Delta ABH\) và \(\Delta CBA:\) Ta có: \(\left\{{}\begin{matrix}\angle ABCchung\\\angle AHB=\angle CAB=90\end{matrix}\right.\)
\(\Rightarrow\Delta ABH\sim\Delta CBA\left(g-g\right)\)
c) \(\Delta ABH\sim\Delta CBA\Rightarrow\dfrac{AB}{BC}=\dfrac{AH}{AC}\Rightarrow AH.BC=AB.AC\)
cho tam giác abc vuông tại a đường cao ah ab=3cm,ac=4
a)C/m:tam giác hba đồng dạng tam giác abc,tam giác HAC đồng dạng ABC b)C/m:AB^2=BC.HB;AH^2=HB.HC;AB.AC=BC.AH c)Tính AH,HBa)
Xét ΔHBA vàΔABC,có:
∠AHB=∠CAB(=90)
∠ABC:chung
⇒ΔHBA ~ΔABC(g-g)
✳Xét ΔHAC vàΔABC,có:
∠CHA=∠CAB(=90)
∠ACB:chung
⇒ΔHAC ~ΔABC(g-g)
a: Xét ΔHBA vuôngtại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng vơi ΔABC
Xét ΔHAC vuôngtại H và ΔABC vuông tại A có
góc C chung
=>ΔHAC đồng dạng với ΔABC
b: ΔHBA đồng dạng với ΔABC
=>BH/BA=BA/BC=HA/AC
=>BA^2=BH*BC và BA*AC=AH*CB
Xet ΔABC vuông tại A có AH là đường cao
nên AH^2=HB*HC
c: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
AH=3*4/5=2,4cm
HB=3^2/5=1,8cm
cho tam giác ABC vuông tại A (AB<AC), đường cao AH a, CM tgiac ABC đồng dạng với tgiac HBA từ đó suy ra AB.AB=BC.BH, AB.AC=BC.AH b, CM tgiac ABC đồng dạng với tgiac HAC từ đó suy ra AC.AC=BC.CH c, tia phân giác của góc ABC cắt AH tại K, cắt AC tại I. CM: tgiac ABK đồng dạng tgiac CBI d, CM AI/IC=KH/AK
cho tam giác ABC vuông tại A, đường cao AH. cmr:AB.AC=BC.AH
Xét tam giác ABC vuông tại A, đường cao AH.
Ta có: AB.AC = BC.AH
\(Xét.\Delta ABC.và.\Delta HBA.có\)
\(\widehat{H}=\widehat{A}=90\\ \widehat{B}.chung\\ \Rightarrow\Delta ABC\sim\Delta HBA\left(g.g\right)\\ \Rightarrow\dfrac{AC}{AH}=\dfrac{BC}{AB}\Rightarrow AC\cdot AB=AH\cdot BC\)
Cho tam giác ABC vuông tại A, đường cao AH. Chứng minh:
AH.BC = AB.AC
S = A B C 1 2 A H . B C = 1 2 A B . A C
Þ AH.BC = AB.AC (ĐPCM)
cho tam giác abc vuông tại a, đường cao ah. a) Chứng minh: ah.bc = ab.ac, b) be là tia phân giác góc abc, be cắt ah tại d. chứng minh. tam giác abd đồng dạng tam giác cbe
a: Xét ΔABC có AH là đường cao
nên \(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC\left(1\right)\)
Ta có: ΔABC vuông tại A
=>\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\left(2\right)\)
Từ (1) và (2) suy ra \(AH\cdot BC=AB\cdot AC\)
b: Xét ΔABD và ΔCBE có
\(\widehat{ABD}=\widehat{CBE}\)(BE là phân giác của góc ABC)
\(\widehat{BAD}=\widehat{BCE}\left(=90^0-\widehat{ABC}\right)\)
Do đó: ΔABD~ΔCBE
- Cho tam giác ABC vuông tại A có AB=6cm, AC=8cm. Gọi AH là đường cao của tam giác ABC. Tính AH? (không sử dụng công thức: AH.BC=AB.AC)
Cho tam giác ABC vuông tại A , AB=6cm, AC=8cm, kẻ đường cao AH
a, Cmr AH.BC=AB.AC
b, Gọi M,N lần lượt là hình chiếu của AH trên AB,AC. Cmr tâm giác AMN đồng dạng với tam giác ACB
c, Tính diện tích BMNC
Cho tam giác ABC vuông tại A , đường cao AH
a) Chứng minh AB2=BC.BH; AB.AC=BC.AH; AH2= BH.HC
b) Cho tam giác AB= 3 ; AC=4
Tính BC , AH , BH , HC
a) Xét △ABC và △HBA có:
góc BAC = góc BHA = 90 độ
góc B chung
⇔ △ABC ∼ △HBA (g.g) (1)
⇔ AB/BC = HB/AB
⇒ AB2 = BC . BH (đpcm)
Xét △ABC và △HAC có:
góc BAC = góc AHC = 90 độ
góc C chung
⇔ △ABC ∼ △HAC (g.g) (2)
⇔ AB/BC = HA/AC
⇒ AB.AC=BC.AH (đpcm)
Từ (1),(2) ⇒ △ABH ∼ △CAH
⇒AH/BH=HC/AH
⇒ AH2= BH. HC (đpcm)