Những câu hỏi liên quan
NL
Xem chi tiết
TA
Xem chi tiết
NM
20 tháng 7 2023 lúc 8:32

ĐK

\(\left\{{}\begin{matrix}x+3\ge0\\7-x\ge0\\2x-8\ge0\end{matrix}\right.\)

Giải hệ bất PT trên được ĐK tổng hợp là \(4\le x\le7\)

Bình phương 2 vế PT

\(x+3+7-x-2\sqrt{\left(x+3\right)\left(7-x\right)}=2x-8\)

\(\Leftrightarrow2\sqrt{\left(x+3\right)\left(7-x\right)}=18-2x\)

BP 3 vế PT

\(4\left(x+3\right)\left(7-x\right)=324+4x^2-72x\)

\(\Leftrightarrow28x-4x^2+84-12x=324+4x^2-72x\)

\(\Leftrightarrow8x^2-88x+240=0\Leftrightarrow x^2-11x+30=0\)

Giải PT bậc 2 rồi đối chiếu với đk, bạn tự làm nốt nhé

 

Bình luận (0)
HN
Xem chi tiết
VM
14 tháng 2 2018 lúc 9:04

Thắng Chó Râm tặc

Bình luận (0)
MN
Xem chi tiết
EC
13 tháng 8 2021 lúc 21:07

ĐK:\(x\ge\dfrac{5}{2}\)

Ta có:\(\sqrt{x-2+\sqrt{2x-5}}+\sqrt{x+2+3\sqrt{2x-5}}=7\sqrt{2}\)

    \(\Leftrightarrow\sqrt{2x-4+2\sqrt{2x-5}}+\sqrt{2x+4+6\sqrt{2x-5}}=7.2\)

    \(\Leftrightarrow\sqrt{2x-5+2\sqrt{2x-5}+1}+\sqrt{2x-5+6\sqrt{2x-5}+6}=14\)

    \(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}+1\right)^2}+\sqrt{\left(\sqrt{2x-5}+3\right)^2}=14\)

    \(\Leftrightarrow\sqrt{2x-5}+1+\sqrt{2x-5}+3=14\)

    \(\Leftrightarrow2\sqrt{2x-5}=10\)

    \(\Leftrightarrow\sqrt{2x-5}=5\)

    \(\Leftrightarrow2x-5=25\Leftrightarrow2x=30\Leftrightarrow x=15\left(tm\right)\)

Bình luận (0)
NL
13 tháng 8 2021 lúc 21:10

ĐKXĐ: \(x\ge\dfrac{5}{2}\)

\(\sqrt{2x-4+2\sqrt{2x-5}}+\sqrt{2x+4+6\sqrt{2x-5}}=14\)

\(\Leftrightarrow\sqrt{2x-5+2\sqrt{2x-5}+1}+\sqrt{2x-5+6\sqrt{2x-5}+3}=14\)

\(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}+1\right)^2}+\sqrt{\left(\sqrt{2x-5}+3\right)^2}=14\)

\(\Leftrightarrow2.\sqrt{2x-5}+4=14\)

\(\Leftrightarrow\sqrt{2x-5}=5\)

\(\Leftrightarrow x=15\)

Bình luận (0)
NC
Xem chi tiết
NA
Xem chi tiết
H24
Xem chi tiết
NT
14 tháng 8 2021 lúc 14:47

a: Ta có: \(\sqrt{4x^2+4x+3}=8\)

\(\Leftrightarrow4x^2+4x+1+2-64=0\)

\(\Leftrightarrow4x^2+4x-61=0\)

\(\Delta=4^2-4\cdot4\cdot\left(-61\right)=992\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{-4-4\sqrt{62}}{8}=\dfrac{-1-\sqrt{62}}{2}\\x_2=\dfrac{-4+4\sqrt{62}}{8}=\dfrac{-1+\sqrt{62}}{2}\end{matrix}\right.\)

 

Bình luận (1)
KC
Xem chi tiết
HD
Xem chi tiết
LQ
16 tháng 7 2017 lúc 20:51

 nhân cả 2 vế vs căn 2 sau đó cố gắng đưa mấy cá  dưới dấu căn về bình phương của 1 số sao đó bỏ dấu căn ( đừng quên đk của x nhé ) 

Bình luận (0)
HD
16 tháng 7 2017 lúc 20:54

bn lm giúp mk đc k?

Bình luận (0)
LQ
16 tháng 7 2017 lúc 21:04

đk x lớn hơn hoặc bằng 5/2
nhân cả 2 vế vs căn 2 ta đc \(\sqrt{2x-5+2\sqrt{2x-5}+1}+\sqrt{2x-5+6\sqrt{2x-5}+9}=14\)

\(\Rightarrow\sqrt{\left(\sqrt{2x-5}+1\right)^2}+\sqrt{\left(\sqrt{2x-5}+3\right)^2}=14\)

từ đó bạn làm tiếp đi nhé

Bình luận (0)
LG
Xem chi tiết
TH
24 tháng 8 2021 lúc 18:05

\(\sqrt{x^{ }2-6x+9}=4-x\)
\(\sqrt{\left(x-3\right)^{ }2}=4-x\)
x-3=4-x
x+x=4+3
2x=7
x=\(\dfrac{7}{2}\)

Bình luận (0)
AH
24 tháng 8 2021 lúc 18:18

Lời giải:
a.

PT \(\Leftrightarrow \left\{\begin{matrix} 4-x\geq 0\\ x^2-6x+9=(4-x)^2=x^2-8x+16\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\leq 4\\ 2x=7\end{matrix}\right.\Leftrightarrow x=\frac{7}{2}\)

b.

ĐKXĐ: $x\geq \frac{3}{2}$

PT \(\Leftrightarrow \sqrt{(2x-3)+2\sqrt{2x-3}+1}+\sqrt{(2x-3)+8\sqrt{2x-3}+16}=5\)

\(\Leftrightarrow \sqrt{(\sqrt{2x-3}+1)^2}+\sqrt{(\sqrt{2x-3}+4)^2}=5\)

\(\Leftrightarrow |\sqrt{2x-3}+1|+|\sqrt{2x-3}+4|=5\)

\(\Leftrightarrow \sqrt{2x-3}+1+\sqrt{2x-3}+4=2\sqrt{2x-3}+5=5\)

\(\Leftrightarrow \sqrt{2x-3}=0\Leftrightarrow x=\frac{3}{2}\)

Bình luận (0)
NT
24 tháng 8 2021 lúc 23:56

a: Ta có: \(\sqrt{x^2-6x+9}=4-x\)

\(\Leftrightarrow\left|x-3\right|=4-x\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=4-x\left(x\ge3\right)\\x-3=x-4\left(x< 3\right)\left(loại\right)\end{matrix}\right.\)

\(\Leftrightarrow2x=7\)

hay \(x=\dfrac{7}{2}\left(nhận\right)\)

Bình luận (0)