Những câu hỏi liên quan
TL
Xem chi tiết
H24
2 tháng 7 2023 lúc 13:59

\(1,\sqrt{5x^2-2x+2}=x+1\)

\(\Leftrightarrow\left(\sqrt{5x^2-2x+2}\right)^2=\left(x+1\right)^2\)

\(\Leftrightarrow5x^2-2x+2=x^2+2x+1\)

\(\Leftrightarrow5x^2-x^2-2x-2x=1-2\)

\(\Leftrightarrow4x^2-4x+1=0\)

\(\Leftrightarrow\left(2x-1\right)^2=0\)

\(\Leftrightarrow2x-1=0\)

\(\Leftrightarrow x=\dfrac{1}{2}\)

Vậy \(S=\left\{\dfrac{1}{2}\right\}\)

\(2,\sqrt{4x^2-x+1}-2x=3\)

\(\Leftrightarrow\left(\sqrt{4x^2-x+1}\right)^2=\left(3+2x\right)^2\)

\(\Leftrightarrow4x^2-x+1=9+12x+4x^2\)

\(\Leftrightarrow4x^2-4x^2-x-12x=9-1\)

\(\Leftrightarrow-13x=8\)

\(\Leftrightarrow x=-\dfrac{8}{13}\)

Vậy \(S=\left\{-\dfrac{8}{13}\right\}\)

Bình luận (0)
NT
2 tháng 7 2023 lúc 13:55

1: =>x>=-1 và 5x^2-2x+2=x^2+2x+1

=>x>=-1 và 4x^2-4x+1=0

=>x=1/2

2: =>\(\sqrt{4x^2-x+1}=2x+3\)

=>x>=-3/2 và 4x^2-x+1=4x^2+12x+9

=>x>=-3/2 và -11x=8

=>x=-8/11(nhận)

Bình luận (0)
NL
Xem chi tiết
NT
Xem chi tiết
B1
26 tháng 8 2017 lúc 20:28

    1. Phương pháp 1: ( Hình 1)

        Nếu  thì ba điểm A; B; C thẳng hàng.

    2. Phương pháp 2: ( Hình 2)

        Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.

       (Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)

    3. Phương pháp 3: ( Hình 3)

        Nếu AB  a ; AC  A thì ba điểm A; B; C thẳng hàng.

        ( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng

        a đi qua điểm O và vuông góc với đường thẳng a cho trước

        - tiết 3 hình học 7)

        Hoặc A; B; C cùng thuộc một đường trung trực của một

        đoạn thẳng .(tiết 3- hình 7)

    4. Phương pháp 4: ( Hình 4)

        Nếu tia OA và tia OB là hai tia phân giác của góc xOy

        thì ba điểm O; A; B thẳng hàng.

        Cơ sở của phương pháp này là:                                                        

        Mỗi góc có một và chỉ một tia phân giác .

     * Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,

                   thì ba điểm O, A, B thẳng hàng.

    5. Nếu K là trung điểm BD, K là giao điểm của BD và AC. Nếu K

       Là trung điểm BD  thì K  K thì A, K, C thẳng hàng.

      (Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)

     

C. Các ví dụ minh họa cho tùng phương pháp:

                                                                Phương pháp 1

    Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA

                     (tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm

                     D sao cho CD = AB.

                     Chứng minh ba điểm B, M, D thẳng hàng.

     Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh

               Do nên cần chứng minh

BÀI GIẢI:

               AMB và CMD có:                                                       

                   AB = DC (gt).

                  

                    MA = MC (M là trung điểm AC)                                              

               Do đó: AMB = CMD (c.g.c). Suy ra:

               Mà   (kề bù) nên .

               Vậy ba điểm B; M; D thẳng hàng.

    Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà  AD = AB, trên tia đối

                     tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED

                      sao cho CM = EN.

                    Chứng minh ba điểm M; A; N thẳng hàng.

Gợi ý: Chứng minh  từ đó suy ra ba điểm M; A; N thẳng hàng.

BÀI GIẢI (Sơ lược)

          ABC = ADE (c.g.c)

          ACM = AEN (c.g.c)

          Mà  (vì ba điểm E; A; C thẳng hàng) nên

Vậy ba điểm M; A; N thẳng hàng (đpcm)

BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1

Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối

          của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và

          CD.

          Chứng minh ba điểm M, A, N thẳng hàng.

Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx  BC (tia Cx và điểm A ở

          phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia

          BC lấy điểm F sao cho BF = BA.

          Chứng minh ba điểm E, A, F thẳng hàng.

Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm

          E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)

          Gọi M là trung điểm HK.

          Chứng minh ba điểm D, M, E thẳng hàng.

Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ

          Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),

          trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.

          Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.

Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các

          đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.

          Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.

                                                              PHƯƠNG PHÁP 2

    Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên

                  Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung  

                 điểm BD và N là trung điểm EC.

                  Chứng minh ba điểm E, A, D thẳng hàng.

Hướng dẫn: Xử dụng phương pháp 2                                            

                  Ta chứng minh AD // BC và AE // BC.

BÀI GIẢI.

                 BMC và DMA có:

                   MC = MA (do M là trung điểm AC)

                    (hai góc đối đỉnh)

                   MB = MD (do M là trung điểm BD)

                  Vậy: BMC = DMA (c.g.c)

                   Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)

                   Chứng minh tương tự : BC // AE (2)

                   Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)

                   và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng. 

   Ví dụ 2: Cho hai đoạn thẳng  AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia

                 AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho

                 D là trung điểm AN. 

Bình luận (0)
AN
28 tháng 8 2017 lúc 14:17

1/ \(x^3+2=3\sqrt[3]{3x-2}\)

Đặt \(\sqrt[3]{3x-2}=a\) thì ta có hệ

\(\hept{\begin{cases}x^3+2-3a=0\\a^3+2-3x=0\end{cases}}\)

Lấy trên - dưới ta được

\(x^3-a^3+3x-3a=0\)

\(\Leftrightarrow\left(x-a\right)\left(x^2+ax+a^2+3\right)=0\)

\(\Leftrightarrow x=a\)

\(\Leftrightarrow x=\sqrt[3]{3x-2}\)

\(\Leftrightarrow x^3-3x+2=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)

Bình luận (0)
AN
28 tháng 8 2017 lúc 14:21

2/ \(x+\sqrt{5-x^2}+x\sqrt{5-x^2}=5\)

Đặt \(\sqrt{5-x^2}=a\ge0\) thì ta có hệ

\(\hept{\begin{cases}x+a+ax=5\\a^2+x^2=5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+a+ax=5\\\left(a+x\right)^2-2ax=5\end{cases}}\)

Tới đây thì đơn giản rồi. Đặt \(\hept{\begin{cases}a+x=S\\ax=P\end{cases}}\) giải tiếp sẽ ra

Bình luận (0)
TL
Xem chi tiết
H9
1 tháng 7 2023 lúc 18:48

1) \(\sqrt{x^2-x}=x\)

\(\Leftrightarrow x^2+x=x^2\)

\(\Leftrightarrow x^2+x-x^2=0\)

\(\Leftrightarrow x=0\)

Vậy: \(x=0\)

2) \(\sqrt{1-x^2}=x-1\) (ĐK: \(x\le1\))

\(\Leftrightarrow1-x^2=\left(x-1\right)^2\)

\(\Leftrightarrow1-x^2=x^2-2x+1\)

\(\Leftrightarrow-x^2-x^2-2x=1-1\)

\(\Leftrightarrow-2x^2-2x=0\)

\(\Leftrightarrow-2x\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}-2x=0\\x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=-1\left(tm\right)\end{matrix}\right.\)

Vậy \(S=\left\{0;-1\right\}\)

Bình luận (0)
NT
1 tháng 7 2023 lúc 18:46

1: =>x^2+x=x^2 và x>=0

=>x=0

2: =>1-x^2=x^2-2x+1 và x>=1

=>x^2-2x+1-1+x^2>=0 và x>=1

=>2x^2-2x=0 và x>=1

=>x=1

Bình luận (2)
ND
Xem chi tiết
LP
3 tháng 9 2023 lúc 22:03

1) đkxđ \(\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\y\ge0\end{matrix}\right.\)

Xét biểu thức \(P=x^3+y^3+7xy\left(x+y\right)\)

\(P=\left(x+y\right)^3+4xy\left(x+y\right)\)

\(P\ge4\sqrt{xy}\left(x+y\right)^2\)

Ta sẽ chứng minh \(4\sqrt{xy}\left(x+y\right)^2\ge8xy\sqrt{2\left(x^2+y^2\right)}\)  (*)

Thật vậy, (*)

\(\Leftrightarrow\left(x+y\right)^2\ge2\sqrt{2xy\left(x^2+y^2\right)}\)

\(\Leftrightarrow\left(x+y\right)^4\ge8xy\left(x^2+y^2\right)\)

\(\Leftrightarrow x^4+y^4+6x^2y^2\ge4xy\left(x^2+y^2\right)\) (**)

Áp dụng BĐT Cô-si, ta được:

VT(**) \(=\left(x^2+y^2\right)^2+4x^2y^2\ge4xy\left(x^2+y^2\right)\)\(=\) VP(**)

Vậy (**) đúng \(\Rightarrowđpcm\). Do đó, để đẳng thức xảy ra thì \(x=y\)

Thế vào pt đầu tiên, ta được \(\sqrt{2x-3}-\sqrt{x}=2x-6\)

\(\Leftrightarrow\dfrac{x-3}{\sqrt{2x-3}+\sqrt{x}}=2\left(x-3\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(nhận\right)\\\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}=2\end{matrix}\right.\)

 Rõ ràng với \(x\ge\dfrac{3}{2}\) thì \(\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}\le\dfrac{1}{\sqrt{\dfrac{2.3}{2}-3}+\sqrt{\dfrac{3}{2}}}< 2\) nên ta chỉ xét TH \(x=3\Rightarrow y=3\) (nhận)

Vậy hệ pt đã cho có nghiệm duy nhất \(\left(x;y\right)=\left(3;3\right)\)

Bình luận (0)
VC
Xem chi tiết
NH
29 tháng 8 2017 lúc 20:53

\(2\left(x-2\right)\left(\sqrt[3]{4x-4}+\sqrt{2x-2}\right)=3x-1\)

\(\Leftrightarrow2\left(x-2\right)\left[\left(\sqrt[3]{4x-4}-2\right)+\left(\sqrt{2x-2}-2\right)\right]+8\left(x-2\right)=3x-1\)

\(\Leftrightarrow2\left(x-2\right)\left[\frac{4x-12}{\sqrt[3]{\left(4x-4\right)^2}+2\sqrt[3]{4x-4}+4}+\frac{2x-6}{\sqrt{2x-2}+2}\right]+\left(5x-15=0\right)\)

\(\left(x-3\right)\left[\frac{8\left(x-2\right)}{...}+\frac{4\left(x-2\right)}{...}+5\right]=0\Leftrightarrow x=3.\)

Bình luận (0)
MH
Xem chi tiết
NC
21 tháng 2 2021 lúc 11:02

ĐKXĐ:  \(x\ge1\)

\(\Rightarrow\left(\sqrt{x-1}+\sqrt{2x+1}\right)^2=1\Leftrightarrow x-1+2x+1+2\sqrt{\left(x-1\right)\left(2x+1\right)}=1\Leftrightarrow3x+2\sqrt{2x^2-x-1}=1\) \(\Leftrightarrow2\sqrt{2x^2-x-1}=1-3x\Rightarrow\left(2\sqrt{2x^2-x-1}\right)^2=\left(1-3x\right)^2\Leftrightarrow8x^2-4x-4=9x^2-6x+1\) \(\Leftrightarrow x^2-2x+5=0\Leftrightarrow\left(x-1\right)^2+4=0\Leftrightarrow\left(x-1\right)^2=-4\) vô lí vì VT\(\ge0\) mà VP<0 \(\Rightarrow\) ko có x Vậy...

Bình luận (1)
TN
Xem chi tiết
LL
Xem chi tiết
PA
1 tháng 6 2020 lúc 10:46

tự làm là hạnh phúc của mỗi công dân.

Bình luận (0)
 Khách vãng lai đã xóa