Những câu hỏi liên quan
LT
Xem chi tiết
NT
10 tháng 5 2022 lúc 19:22

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

Do đó: ΔABC\(\sim\)ΔHBA

b: ta có: ΔABC\(\sim\)ΔHBA

nên BA/BH=BC/BA

hay \(BA^2=BH\cdot BC\)

Bình luận (0)
NT
10 tháng 5 2022 lúc 19:26

a.Xét tam giác ABC và tam giác HBA, có:

^B: chung

^BAC = ^BHA = 90 độ

Vậy tam giác ABC đồng dạng tam giác HBA (g.g)

b.\(\rightarrow\dfrac{AB}{HB}=\dfrac{BC}{AB}\)

\(\Leftrightarrow AB^2=BH.BC\left(đfcm\right)\) (1)

c.Áp dụng định lý pitago \(\Rightarrow BC=\sqrt{6^2+10^2}=2\sqrt{34}\left(cm\right)\)

(1) \(\Leftrightarrow6^2=2\sqrt{34}BH\)

\(\Leftrightarrow BH=\dfrac{9\sqrt{34}}{17}\left(cm\right)\)

Áp dụng định lý pitago trong tam giác ABH \(\Rightarrow AH=\sqrt{6^2-\left(\dfrac{9\sqrt{34}}{17}\right)^2}=\dfrac{15\sqrt{34}}{17}\left(cm\right)\)

Bình luận (0)
PP
Xem chi tiết
BT
Xem chi tiết
NT
24 tháng 7 2021 lúc 0:44

a) Sửa đề: Tia AD là tia phân giác của góc HAC

Xét ΔBAD có BA=BD(gt)

nên ΔBAD cân tại B(Định nghĩa tam giác cân)

Ta có: \(\widehat{BAD}+\widehat{CAD}=90^0\)

\(\widehat{HAD}+\widehat{BDA}=90^0\)

mà \(\widehat{BAD}=\widehat{BDA}\)(ΔBAD cân tại B)

nên \(\widehat{CAD}=\widehat{HAD}\)

hay AD là tia phân giác của \(\widehat{HAC}\)(đpcm)

b) Xét ΔAKD vuông tại K và ΔAHD vuông tại H có 

AD chung

\(\widehat{KAD}=\widehat{HAD}\)(AD là tia phân giác của \(\widehat{KAH}\))

Do đó: ΔAKD=ΔAHD(cạnh huyền-góc nhọn)

Suy ra: AK=AH(hai cạnh tương ứng)

Bình luận (0)
TL
Xem chi tiết
VD
19 tháng 3 2022 lúc 15:19

\(S_{ABC}=\dfrac{AB.AC}{2}=\dfrac{21.28}{2}=294\left(cm^2\right)\)

Ta có:\(S_{ABC}=\dfrac{AB.AC}{2}\) mà ta lại có: \(S_{ABC}=\dfrac{AH.BC}{2}\)

\(\Rightarrow\dfrac{AB.AC}{2}=\dfrac{AH.BC}{2}\Rightarrow AB.AC=AH.BC\left(đpcm\right)\)

Bình luận (4)
NL
Xem chi tiết
NT
28 tháng 1 2022 lúc 13:45

a, Xét tứ giác ADHE có : 

^A = ^ADH =  ^HEA = 900

Vậy tứ giác ADHE là hcn 

Vậy AH = DE ( 2 đường chéo bằng nhau ) 

b, Xét tam giác AEH và tam giác AHC có : 

^AEH = ^AHC = 900

^A _ chung 

Vậy tam giác AEH ~ tam giác AHC ( g.g ) 

=> AH/AC = AE/AH => AH^2 = AE.AC (1) 

tương tự với tam giác ADH ~ tam giác AHB (g.g)

=> AD/AH = AH/AB => AH^2=AD.AB (2) 

Từ (1) ; (2) suy ra AE.AC = AD.AB 

c, Xét tam giác ABH và tam giác CAH 

^AHB = ^CHA = 900

^ABH = ^CAH ( cùng phụ ^BAH )

Vậy tam giác ABH ~ tam giác CAH (g.g)

=> AH/CH = BH/AH => AH^2 = BH.CH 

=> CH = AH^2/BH = 144/9 = 16

=> BC = BH + CH = 25 cm 

Diện tích tam giác ABC là : SABC = 1/2 . AH . BC 

= 1/2 . 12 . 25 = 150 cm2

Bình luận (0)
KK
Xem chi tiết
KL
26 tháng 6 2021 lúc 15:30

1.Xét ΔHBA và ΔABC có:

góc AHB=góc BAC=90o

Góc B chung 

=> ΔABC đồng dạng ΔHBA (g.g)

=>\(\dfrac{BA}{BH}=\dfrac{BC}{BA}\)\(\Rightarrow BA.BA=BH.BC\)

2. Xét ΔHBI và ΔABE có:

góc ABE=IBH (Vì BE là tia phân giác của góc B, I nằm trên BE)

góc BAE=góc IHB=90o

=>ΔHBI đồng dạng ΔABE (g.g)

 

 

Bình luận (1)
NN
Xem chi tiết
HP
Xem chi tiết
MH
17 tháng 3 2022 lúc 21:37

a) Xét ΔHBA và ΔABC có:

^A=^H=90o

^HAB=^ACB(cùng phụ với ^ABC)

→ ΔHBA∼ΔABC(g.g)

b) Áp dụng định lí Pytago vào tam giác vuông ABC, ta có:

\(BC=\sqrt{20^2+15^2}=25cm\)

\(S_{ABC}=\dfrac{1}{2}AH.BC=\dfrac{1}{2}AB.AC\)

\(\rightarrow AH.BC=AB.AC\)

\(\rightarrow AH=\dfrac{AB.AC}{BC}=12cm\)

c) Xét ΔAHB và ΔCHA có:

^AHB=^CHA=90o

^HCA=^HAB(cùng phụ với ^ABC)

→ ΔAHB∼ΔCHA(g.g)

\(\rightarrow\dfrac{AH}{HB}=\dfrac{HC}{AH}\left(tươngứng\right)\)

\(\rightarrow AH^2=HB.HC\)

Bình luận (0)
CC
Xem chi tiết
NL
23 tháng 3 2022 lúc 9:35

a,xét ΔABC và ΔAHC, có:

góc BAC=góc AHC(=90 độ)

góc C chung

=>ΔABC đồng dạng ΔAHC(g-g)

Bình luận (0)
LB
Xem chi tiết
NT
12 tháng 11 2021 lúc 23:49

a: \(\widehat{C}=30^0\)

AB=4cm

\(AC=4\sqrt{3}\left(cm\right)\)

Bình luận (0)