Cho ΔABC vuông tại A, AH là đường cao. Chứng minh: BC+AH>AB+AC
Cho tam giác ΔABC vuông tại A có AB=6cm,AC=10cm . Đường cao AH a)Chứng minh ΔABC / ΔABH b)Chứng minh AB²=BH.BC c)Tính BC,AH,BH
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
Do đó: ΔABC\(\sim\)ΔHBA
b: ta có: ΔABC\(\sim\)ΔHBA
nên BA/BH=BC/BA
hay \(BA^2=BH\cdot BC\)
a.Xét tam giác ABC và tam giác HBA, có:
^B: chung
^BAC = ^BHA = 90 độ
Vậy tam giác ABC đồng dạng tam giác HBA (g.g)
b.\(\rightarrow\dfrac{AB}{HB}=\dfrac{BC}{AB}\)
\(\Leftrightarrow AB^2=BH.BC\left(đfcm\right)\) (1)
c.Áp dụng định lý pitago \(\Rightarrow BC=\sqrt{6^2+10^2}=2\sqrt{34}\left(cm\right)\)
(1) \(\Leftrightarrow6^2=2\sqrt{34}BH\)
\(\Leftrightarrow BH=\dfrac{9\sqrt{34}}{17}\left(cm\right)\)
Áp dụng định lý pitago trong tam giác ABH \(\Rightarrow AH=\sqrt{6^2-\left(\dfrac{9\sqrt{34}}{17}\right)^2}=\dfrac{15\sqrt{34}}{17}\left(cm\right)\)
Cho ΔABC vuông tại A (AB<AC), đường cao AH (H∈BC). BD là phân giác của ∠ABC (D∈AC). Gọi I là giao điểm của AH và BD.
a. Chứng minh: ΔHBA đồng dạng ΔABC và ΔHBI đồng dạng ΔABD
b. Chứng minh: \(\frac{IA}{IH}=\frac{BC}{AB}\)
c. Đường thẳng vuông góc với BD tại B cắt đường thẳng AH tại M. CHứng minh: MA.IH = MH.IA
Giúp mình ý b,c với ạ
cho ΔABC vuông tại A . Vẽ đường cao AH .Trên cạnh BC lấy điểm D sao cho BD=BA
a) chứng minh rằng :Tia AC là tia phân giác của HAC
b) Vẽ DK ⊥ AC (K ∈ AC).chứng minh rằng : AK=AH
c)chứng minh rằng :AB+AC<BC+AH
a) Sửa đề: Tia AD là tia phân giác của góc HAC
Xét ΔBAD có BA=BD(gt)
nên ΔBAD cân tại B(Định nghĩa tam giác cân)
Ta có: \(\widehat{BAD}+\widehat{CAD}=90^0\)
\(\widehat{HAD}+\widehat{BDA}=90^0\)
mà \(\widehat{BAD}=\widehat{BDA}\)(ΔBAD cân tại B)
nên \(\widehat{CAD}=\widehat{HAD}\)
hay AD là tia phân giác của \(\widehat{HAC}\)(đpcm)
b) Xét ΔAKD vuông tại K và ΔAHD vuông tại H có
AD chung
\(\widehat{KAD}=\widehat{HAD}\)(AD là tia phân giác của \(\widehat{KAH}\))
Do đó: ΔAKD=ΔAHD(cạnh huyền-góc nhọn)
Suy ra: AK=AH(hai cạnh tương ứng)
Cho ΔABC vuông tại A, đường cao AH và đường phân giác AD (H và D thuộc BC). Biết AB = 21cm, AC = 28cm.
a) Tính diện tích tam giác ABC và chứng minh AH . BC = AB . AC
\(S_{ABC}=\dfrac{AB.AC}{2}=\dfrac{21.28}{2}=294\left(cm^2\right)\)
Ta có:\(S_{ABC}=\dfrac{AB.AC}{2}\) mà ta lại có: \(S_{ABC}=\dfrac{AH.BC}{2}\)
\(\Rightarrow\dfrac{AB.AC}{2}=\dfrac{AH.BC}{2}\Rightarrow AB.AC=AH.BC\left(đpcm\right)\)
Cho ΔABC vuông tại A, đường cao AH. Gọi D và E thứ tự là hình chiếu của H trên AB và AC. a) Chứng minh: AH=DE b) Chứng minh: AD. AB=AE. AC c) Biết AH=12cm; BH=9cm. Tính diện tích ABC. d) Gọi M là trung điểm của BC. Chứng minh DE vuông góc với AM
a, Xét tứ giác ADHE có :
^A = ^ADH = ^HEA = 900
Vậy tứ giác ADHE là hcn
Vậy AH = DE ( 2 đường chéo bằng nhau )
b, Xét tam giác AEH và tam giác AHC có :
^AEH = ^AHC = 900
^A _ chung
Vậy tam giác AEH ~ tam giác AHC ( g.g )
=> AH/AC = AE/AH => AH^2 = AE.AC (1)
tương tự với tam giác ADH ~ tam giác AHB (g.g)
=> AD/AH = AH/AB => AH^2=AD.AB (2)
Từ (1) ; (2) suy ra AE.AC = AD.AB
c, Xét tam giác ABH và tam giác CAH
^AHB = ^CHA = 900
^ABH = ^CAH ( cùng phụ ^BAH )
Vậy tam giác ABH ~ tam giác CAH (g.g)
=> AH/CH = BH/AH => AH^2 = BH.CH
=> CH = AH^2/BH = 144/9 = 16
=> BC = BH + CH = 25 cm
Diện tích tam giác ABC là : SABC = 1/2 . AH . BC
= 1/2 . 12 . 25 = 150 cm2
Cho ΔABC vuông tại A ( AB < AC ), đường cao AH ( H ϵ BC ).
1. Chứng minh: ΔHBA đồng dạng ΔABC và BA.BA=BH.BC.
2. Kẻ phân giác BE của góc ABC ( E ϵ AC ) , BE cát AH tại I .
Chứng minh : ΔHBI đồng dạng ΔABE .
3. Chứng minh : AI=AE
1.Xét ΔHBA và ΔABC có:
góc AHB=góc BAC=90o
Góc B chung
=> ΔABC đồng dạng ΔHBA (g.g)
=>\(\dfrac{BA}{BH}=\dfrac{BC}{BA}\)\(\Rightarrow BA.BA=BH.BC\)
2. Xét ΔHBI và ΔABE có:
góc ABE=IBH (Vì BE là tia phân giác của góc B, I nằm trên BE)
góc BAE=góc IHB=90o
=>ΔHBI đồng dạng ΔABE (g.g)
Cho ΔABC vuông tại A có AB < AC, AH là đường cao (H ∈BC). Trên cạnh BC lấy điểm M sao cho CM = CA. Vẽ MK vuông góc với AC (K∈ AC)
a) Chứng minh ΔACM cân và ΔCKM =ΔCHA
b) Hai đoạn thẳng MK và AH cắt nhau tại O. Chứng minh CO là tia phân giác của ACB
c) Trên cạnh AB lấy điểm N sao cho AN = AH. Chứng minh MN vuông góc với AB.
Cho ΔABC vuông tại A có đường cao AH, biết AB = 15cm , AC = 20cm.
a) Chứng minh: ΔHBA và ΔABC đồng dạng.
b) Tính độ dài BC và AH.
c) Chứng minh: AH^2 = HB.HC
Ai biết thì giúp mình với ạ. Xin cảm ơn ạ
a) Xét ΔHBA và ΔABC có:
^A=^H=90o
^HAB=^ACB(cùng phụ với ^ABC)
→ ΔHBA∼ΔABC(g.g)
b) Áp dụng định lí Pytago vào tam giác vuông ABC, ta có:
\(BC=\sqrt{20^2+15^2}=25cm\)
\(S_{ABC}=\dfrac{1}{2}AH.BC=\dfrac{1}{2}AB.AC\)
\(\rightarrow AH.BC=AB.AC\)
\(\rightarrow AH=\dfrac{AB.AC}{BC}=12cm\)
c) Xét ΔAHB và ΔCHA có:
^AHB=^CHA=90o
^HCA=^HAB(cùng phụ với ^ABC)
→ ΔAHB∼ΔCHA(g.g)
\(\rightarrow\dfrac{AH}{HB}=\dfrac{HC}{AH}\left(tươngứng\right)\)
\(\rightarrow AH^2=HB.HC\)
(Vẽ hình và giải ạ) Cho tam giác ABC vuông tại A. Kẻ đường cao AH.
a) Chứng minh ΔABC đồng dạng ΔAHC
b) Chứng minh ΔABC đồng dạng ΔHBC
c) Chứng minh AH ² = HB . HC
d) Chứng minh AB ² = AH . BC
a,xét ΔABC và ΔAHC, có:
góc BAC=góc AHC(=90 độ)
góc C chung
=>ΔABC đồng dạng ΔAHC(g-g)
Bài 3. Cho ΔABC vuông tại A có BC = 8cm, 𝐵 ̂= 60o
a) Giải tam giác vuông ABC
b) Kẻ đường cao AH của ΔABC. Tính AH, HC.
c) Gọi M, N lần lượt là hình chiếu của H lên AB, AC. Chứng minh AMHN là hình
chữ nhật và MN3 = BC.BM.CN
a: \(\widehat{C}=30^0\)
AB=4cm
\(AC=4\sqrt{3}\left(cm\right)\)