BC + AH > AB + AC
⇔ (BC + AH)2 > (AB +AC)2 ⇔ BC2 + 2BC.AH +AH2 > AB2 + 2AB.AC + AC2 (1)
mà △ABC vuông tại A nên AB2 + AC2 = BC2
AH ⊥ BC ⇒ AH.BC = AB.AC
(1)⇔ BC2 + 2BC.AH + AH2 - AB2 -AC2 - 2AB.AC > 0
⇔AH2 > 0 luôn đúng
BC + AH > AB + AC
⇔ (BC + AH)2 > (AB +AC)2 ⇔ BC2 + 2BC.AH +AH2 > AB2 + 2AB.AC + AC2 (1)
mà △ABC vuông tại A nên AB2 + AC2 = BC2
AH ⊥ BC ⇒ AH.BC = AB.AC
(1)⇔ BC2 + 2BC.AH + AH2 - AB2 -AC2 - 2AB.AC > 0
⇔AH2 > 0 luôn đúng
Bài 10: Cho ∆ABC vuông tại A. Vẽ đường cao AH. Trên cạnh BC lấy điểm D sao cho BD = BA a) Chứng minh: góc BAD = góc ADB b) Chứng minh: AD là phân giác của góc HAC c) Vẽ DK vuông góc AC ( K thuộc AC). Chứng minh: AK = AH d) Chứng minh: AB + AC < BC + AH
Cho ΔABC cân tại A. Kẻ AH ⊥ BC tại H, từ điểm M bất kỳ trên BC kẻ đường thẳng song song với AH cắt các đoạn thẳng AB, AC lần lượt tại PQ
a, Chứng minh △APQ cân. Tính các góc của △APQ biết góc ABC = 50o
b, Vẽ AI ⊥ PQ, chứng minh AI // BC, AI = MH
c, Chứng minh: QM + PM = 2AH
Cho ∆𝑨𝑩𝑪 cân tại A, đường cao AH (H ∈ BC).
a) Chứng minh ∆𝐴𝐻𝐵 = ∆𝐴𝐻𝐶.
b) Từ H kẻ đường thẳng song song với AC, cắt AB tại D. Chứng minh AD = DH.
c) Gọi E là trung điểm của AC, CD cắt AH tại G. Chứng minh B, G, E thẳng hàng.
d) Chứng minh chu vi ∆𝐴𝐵𝐶 > 𝐴𝐻 + 3.𝐵G
Cho ΔABC vuông tại A, AH là đường cao. Chứng minh: AB+AC<BC+AH
Cho tam giác ABC vuông tại A có AB=6cm,AC=8cm. Kẻ đường cao AH vuông góc với BC (H thuộc BC).
a) Tính độ dài BC.
b) Tia phản giác góc HAC cắt cạnh BC tại D. Qua D kẻ DK vuông góc với AC (K thuộc AC). Chứng minh: tam giác AHD = tam giác AKD.
c) Chứng minh: tam giác BAD cân.
d) Tia phân giác góc BAH cắt cạnh BC tại E. Chứng minh: AB+AC=BC+DE.
Cho ΔABC cân tại A. Vẽ AH vuông góc với BC tại H.
a) Cho biết AH = 10cm, AH = 8cm. Tính độ dài đoạn thẳng BH.
b) Chứng minh rằng ΔHAB = ΔHAC.
c) Gọi D là điểm nằm trên đoạn thẳng AH. Trên tia đối của tia DB lấy điểm E sao cho DE = DB. Chứng minh rằng AD + DE > AC.
d) Gọi K là điểm trên đoạn thẳng CD sao cho CK= 1/2 CD. Chứng minh rằng 3 điểm H, K, E thẳng hàng.
Các bẹn iu dấu, giúp mình nha-))) C.ơn nhiều❤ (cả hình)
cho tam giác ABC cân tại A có đường cao AH. E là trung điểm của AB. Đường thẳng vuông góc với AB tại E cắt AH tại F. Chứng minh FA = FC
Giải giúp mình với !!!
Cho tam giác ABC cân tại A. Gọi M, N là trung điểm các cạnh AB, AC. Các đường thẳng vuông góc với AB, AC tại M; N cắt nhau tại điểm O, AO cắt BC tại H. Chứng minh:
a) AMO =ANO
b) AH là phân giác của góc A
c) HB = HC và AH⊥ BC
d) So sánh OC và HB
Cho tam giác ABC cân(AB=AC). Các đường phân giác BE,CF cắt nhau tại H. a)chứng minh tam giác ABE=tam giác ACF b)tia AH cắt BC tại D.chứng minh D là trung điểm BC và EF//BC c)chứng minh AH là trung trực của EF.so sánh HF và HC d)tìm điều kiện của tam giác ABC để HC=2HD