Những câu hỏi liên quan
VA
Xem chi tiết
NC
Xem chi tiết
NC
4 tháng 12 2018 lúc 21:52

Sao ảnh đại diện của bạn giống mình thế?

Bình luận (0)
CG
Xem chi tiết
NT
29 tháng 11 2022 lúc 22:53

a: \(=\dfrac{x^2-1-3x^2+3+2x^2+7}{2x-y}=\dfrac{9}{2x-y}\)

b: \(=\dfrac{x+y+x-y+2x-3y}{1-xy}=\dfrac{4x-3y}{1-xy}\)

Bình luận (0)
KN
Xem chi tiết
QD
20 tháng 8 2017 lúc 19:42

a)\(\dfrac{2x^2-10xy}{2xy}+\dfrac{5y-x}{y}+\dfrac{x+2y}{x}\)

\(=\dfrac{2x\left(x-5y\right)}{2xy}+\dfrac{5y-x}{y}+\dfrac{x+2y}{x}\)

\(=\dfrac{x-5y}{y}+\dfrac{5y-x}{y}+\dfrac{x+2y}{x}\)

\(=\dfrac{x\left(x-5y\right)+x\left(5y-x\right)+y\left(x+2y\right)}{xy}\)

\(=\dfrac{x^2-5xy+5xy-x^2+xy+2y^2}{xy}\)

\(=\dfrac{y\left(x+2y\right)}{xy}\)

Bình luận (0)
NN
24 tháng 11 2017 lúc 12:56

b) \(\dfrac{x+1}{2x-2}+\dfrac{x^2+3}{2-2x^2}\)

\(=\dfrac{x+1}{2x-2}-\dfrac{x^2+3}{2x^2-2}\)

\(=\dfrac{x+1}{2\left(x-1\right)}-\dfrac{x^2+3}{2\left(x^2-1\right)}\)

\(=\dfrac{x+1}{2\left(x-1\right)}-\dfrac{x^2+3}{2\left(x-1\right)\left(x+1\right)}\) MTC: \(2\left(x-1\right)\left(x+1\right)\)

\(=\dfrac{\left(x+1\right)\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}-\dfrac{x^2+3}{2\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{\left(x+1\right)\left(x+1\right)-\left(x^2+3\right)}{2\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{\left(x+1\right)^2-x^2-3}{2\left(x-1\right)\left(x+1\right)}\)

e) \(\dfrac{2x^2-xy}{x-y}+\dfrac{xy+y^2}{y-x}+\dfrac{2y^2-x^2}{x-y}\)

\(=\dfrac{2x^2-xy}{x-y}-\dfrac{xy+y^2}{x-y}+\dfrac{2y^2-x^2}{x-y}\)

\(=\dfrac{\left(2x^2-xy\right)-\left(xy+y^2\right)+\left(2y^2-x^2\right)}{x-y}\)

\(=\dfrac{2x^2-xy-xy-y^2+2y^2-x^2}{x-y}\)

\(=\dfrac{x^2-2xy+y^2}{x-y}\)

\(=\dfrac{\left(x-y\right)^2}{x-y}\)

\(=x-y\)

Bình luận (0)
MH
Xem chi tiết
NT
29 tháng 11 2023 lúc 14:35

bài 1: ĐKXĐ: \(x\notin\left\{2;-2\right\}\)

\(\dfrac{x}{x+2}-\dfrac{x}{x-2}\)

\(=\dfrac{x\left(x-2\right)-x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{x^2-2x-x^2-2x}{\left(x-2\right)\left(x+2\right)}=-\dfrac{4x}{x^2-4}\)

Bài 2:

1: \(x^2y^2-8-1\)

\(=x^2y^2-9\)

\(=\left(xy-3\right)\left(xy+3\right)\)

2: \(x^3y-2x^2y+xy-xy^3\)

\(=xy\cdot x^2-xy\cdot2x+xy\cdot1-xy\cdot y^2\)

\(=xy\left(x^2-2x+1-y^2\right)\)

\(=xy\left[\left(x-1\right)^2-y^2\right]\)

\(=xy\left(x-1-y\right)\left(x-1+y\right)\)

3: \(x^3-2x^2y+xy^2\)

\(=x\cdot x^2-x\cdot2xy+x\cdot y^2\)

\(=x\left(x^2-2xy+y^2\right)=x\left(x-y\right)^2\)

4: \(x^2+2x-y^2+1\)

\(=\left(x^2+2x+1\right)-y^2\)

\(=\left(x+1\right)^2-y^2\)

\(=\left(x+1+y\right)\left(x+1-y\right)\)

5: \(x^2+2x-4y^2+1\)

\(=\left(x^2+2x+1\right)-4y^2\)

\(=\left(x+1\right)^2-4y^2\)

\(=\left(x+1-2y\right)\left(x+1+2y\right)\)

6: \(x^2-6x-y^2+9\)

\(=\left(x^2-6x+9\right)-y^2\)

\(=\left(x-3\right)^2-y^2=\left(x-3-y\right)\left(x-3+y\right)\)

Bình luận (0)
TL
Xem chi tiết
NT
14 tháng 5 2022 lúc 23:14

a: \(=\dfrac{x+2y}{xy}\cdot\dfrac{2x^2}{\left(x+2y\right)^2}=\dfrac{2x}{y\left(x+2y\right)}\)

b: \(=\dfrac{x\left(4x^2-y^2\right)}{x^2+xy+y^2}\cdot\dfrac{\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(2x-y\right)^3}\)

\(=\dfrac{x\left(x-y\right)\left(2x+y\right)\left(2x-y\right)}{\left(2x-y\right)^3}\)

\(=\dfrac{x\left(x-y\right)\left(2x+y\right)}{\left(2x-y\right)^2}\)

c: \(=\dfrac{x+3}{x+2}\cdot\dfrac{2x-1}{3\left(x+3\right)}\cdot\dfrac{2\left(x+2\right)}{2\left(2x-1\right)}\)

=1/3

d: \(=\dfrac{x+1}{x+2}:\left(\dfrac{1}{2x}\cdot\dfrac{3x+3}{2x-3}\right)\)

\(=\dfrac{x+1}{x+2}\cdot\dfrac{2x\left(2x-3\right)}{3\left(x+1\right)}=\dfrac{2x\left(2x-3\right)}{3\left(x+2\right)}\)

Bình luận (0)
YP
Xem chi tiết
H24
13 tháng 3 2022 lúc 8:51

 

a) \(A=2x^2-\dfrac{1}{3}y\)

A= \(\left(2-\dfrac{1}{3}\right)\)\(x^2y\)

A=\(\dfrac{5}{3}\)\(x^2y\)

Tại \(x=2;y=9\) ta có

A=\(\dfrac{5}{3}\).(2)\(^2\).9 = \(\dfrac{5}{3}\).4 .9 = 60

Vậy tại \(x=2;y=9\) biểu thức A= 60

b) P=\(2x^2+3xy+y^2\)            (\(y^2\) là 1\(y^2\) nha bạn)

P=\(\left(2+3+1\right)\left(x^2.x\right)\left(y.y^2\right)\)

P= 6\(x^3y^3\)

Tại \(x=-\dfrac{1}{2};y=\dfrac{2}{3}\) ta có

P= 6.\(\left(-\dfrac{1}{2}\right)^3.\left(\dfrac{2}{3}\right)^3\) = 6.\(\left(-\dfrac{1}{8}\right).\dfrac{8}{27}\) = \(-\dfrac{2}{9}\)

Vậy tại \(x=-\dfrac{1}{2};y=\dfrac{2}{3}\) biểu thức P= \(-\dfrac{2}{9}\)

c)\(\left(-\dfrac{1}{2}xy^2\right).\left(\dfrac{2}{3}x^3\right)\)

=\(\left((-\dfrac{1}{2}).\dfrac{2}{3}\right)\left(x.x^3\right).y^2\)

=\(-\dfrac{1}{3}\)\(x^4y^2\)

Tại \(x=2;y=\dfrac{1}{4}\)ta có

\(-\dfrac{1}{3}\).\(\left(2\right)^4.\left(\dfrac{1}{4}\right)^2=-\dfrac{1}{3}.16.\dfrac{1}{16}=-\dfrac{1}{3}\)

\(\)Vậy \(x=2;y=\dfrac{1}{4}\) biểu thức \(\left(-\dfrac{1}{2}xy^2\right).\left(\dfrac{2}{3}x^3\right)\)\(-\dfrac{1}{3}\)

CHÚC BẠN HỌC TỐT NHA

 

 

Bình luận (0)
QN
Xem chi tiết
NT
24 tháng 5 2022 lúc 10:36

a: \(=\dfrac{1}{x-y}-\dfrac{3xy}{\left(x-y\right)\left(x^2+xy+y^2\right)}+\dfrac{x-y}{x^2+xy+y^2}\)

\(=\dfrac{x^2+xy+y^2-3xy+x^2-2xy+y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{2x^2-4xy+2y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}=\dfrac{2\left(x-y\right)}{x^2+xy+y^2}\)

d: \(=\dfrac{x^3-1}{x-1}-\dfrac{x^2-1}{x+1}\)

\(=x^2+x+1-x+1=x^2+2\)

Bình luận (0)
SK
Xem chi tiết
NH
28 tháng 6 2017 lúc 15:26

Rút gọn phân thức

Bình luận (0)