. Tìm x thỏa mãn |x - 1| |1 - x| = 4 - x
tìm các số nguyên x thỏa mãn |x-1|+|4-x|=3
Tìm x và y nguyên thỏa mãn x4-2y2=1
Tìm STN x thỏa mãn: 3^x+4^x=5^x
1:Tìm GTNN x^2+y^2 biết :(x^2-y^2+1)+4x^2y^2-x^2-y^2=0
2:Cho a nhỏ hơn hoặc =a,b,c nhỏ hơn hoặc =1.Tìm GTNN,GTLN của biểu thức:P=a+b+c-ab-bc-ca
3:cho các số thực nguyên thỏa mãn điều kiện :x^2+y^2+z^2 nhỏ hơn hoặc = 27.Tìm giá trị nhỏ nhất ,GTLN x+y+z+xy+yz+zx
4: cho x,y dương thỏa mãn dk: x+y=1.Tìm GTNN:M=(x+1/x)+(y+1/y)
Tìm (x,y) nguyên thỏa mãn phương trình \(x^4-y^4=3x^2+1\)
Lời giải:
PT \(\Leftrightarrow y^4=x^4-3x^2-1\)
Ta thấy:
\(x^4-3x^2-1=(x^2-4x^2+4)+x^2-5=(x^2-2)^2+x^2-5\)
Nếu $x^2-5\leq 0\Rightarrow x^2< 9\Rightarrow -3< x< 3$. Vì $x$ nguyên nên $x\in\left\{\pm 2; \pm 1;0\right\}$
Thử các TH trên ta thấy đều không thỏa mãn.
Do đó $x^2-5>0$.
\(\Rightarrow x^4-3x^2-1=(x^2-2)^2+x^2-5> (x^2-2)^2(*)\)
Mặt khác:
\(x^4-3x^2-1=(x^4-2x^2+1)-(x^2+2)=(x^2-1)^2-(x^2+2)< (x^2-1)^2(**)\)
Từ $(*); (**)\Rightarrow (x^2-1)^2> x^4-3x^2-1> (x^2-2)^2$
$\Leftrightarrow (x^2-1)^2> y^4> (x^2-2)^2$
Theo nguyên lý kẹp thì điều này vô lý
Do đó không tồn tại $x,y$ nguyên thỏa mãn đề bài.
Tìm các số thực x,y,z thỏa mãn (x−1)^2 +|3y−1|+|z+2| = 0.
Ta có: \(\left(x-1\right)^2\ge0\forall x\)
\(\left|3y-1\right|\ge0\forall y\)
\(\left|z+2\right|\ge0\forall z\)
Do đó: \(\left(x-1\right)^2+\left|3y-1\right|+\left|z+2\right|\ge0\forall x,y,z\)
Dấu '=' xảy ra khi \(\left(x,y,z\right)=\left(1;\dfrac{1}{3};-2\right)\)
a)tìm các cặp số nguyên x;y thỏa mãn (2x-)(x+1)=|y+1|
dạnh toán này quá cao siêu quá,ko phù hợp vs em...hs lớp 6
tìm cặp số tự nhiên (X,y) thỏa mãn : (x-y) (y+1) + y = 15
\(\left(x-y\right)\left(y+1\right)+y=15\)
=>\(\left(x-y\right)\left(y+1\right)+y+1=16\)
=>(y+1)(x-y+1)=16
mà x,y là các số tự nhiên
nên \(\left(y+1\right)\left(x-y+1\right)=1\cdot16=2\cdot8=4\cdot4=8\cdot2=16\cdot1\)
=>\(\left(y+1;x-y+1\right)\in\left\{\left(1;16\right);\left(2;8\right);\left(4;4\right);\left(8;2\right);\left(16;1\right)\right\}\)
=>\(\left(y;x-y+1\right)\in\left\{\left(0;16\right);\left(1;8\right);\left(3;4\right);\left(7;2\right);\left(15;1\right)\right\}\)
=>\(\left(y,x\right)\in\left\{\left(0;15\right);\left(1;8\right);\left(3;6\right);\left(7;8\right);\left(15;15\right)\right\}\)