Tìm m để hệ bất phương trìnhsau có nghiệm:
{2x+1<=0
{3x+1>= m
Tìm m để hệ bất phương trình có nghiệm :
\(\left\{{}\begin{matrix}2x-1>x+1\\2x-1>m\end{matrix}\right.\)
\(\left\{{}\begin{matrix}2x-1>x+1\\2x-1>m\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x>2\\2x-1>m\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x>4\\2x-1>m\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x-1>3\\2x-1>m\end{matrix}\right.\)
\(\Rightarrow m\le3\)
\(\left\{{}\begin{matrix}2x-1>x+1\\2x-1>m\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x>2\\x>\dfrac{m+1}{2}\end{matrix}\right.\)
Để bpt có nghiệm thì: \(\left[{}\begin{matrix}\dfrac{m+1}{2}>2\\\dfrac{m+1}{2}=2\\\dfrac{m+1}{2}< 2\end{matrix}\right.\) \(\Leftrightarrow\) \(\left[{}\begin{matrix}m>3\\m=3\\m< 3\end{matrix}\right.\) \(\Leftrightarrow\) \(m\in R\)
Vậy với mọi giá trị của m thì bpt có nghiệm
Chúc bn học tốt!
Tìm m để hệ bất phương trình có nghiệm
\(\left\{{}\begin{matrix}2x-1< 0\\mx+4>0\end{matrix}\right.\)
Tìm m để hệ bất phương trình sau vô nghiệm
3 x + 4 > x + 9 1 - 2 x ≤ m - 3 x + 1
A. m < 1/2
B. m< 5/2
C. m ≤ 3/2
D. m ≤ 5/2
Chọn D
+ Xét bpt : 3x-4> x+ 9 hay x> 5/ 2
Suy ra tập nghiệm của bpt đầu là : S1= ( 5/2; + ∞)
+ Xét bpt: 1-2x ≤ m-3x+ 1
Hay x ≤ m
Suy ra tập nghiệm của bpt thứ 2 là S2= ( -∞; m]
Để hệ bpt vô nghiệm khi và chỉ khi :
Tìm m để hệ bất phương trình sau vô nghiệm
3 x + 5 ≥ x - 1 x + 2 2 ≤ x - 1 2 + 9 mx + 1 > m - 2 x + m
A. m > 3
B. m ≥ 3
C. m < 2
D. Tất cả sai
Chọn B
+ Bpt: 3x+ 5 ≥ x- 1 hay 2x ≥ - 6
Suy ra: x ≥ - 3
Tập nghiệm S1= [-3; + ∞)
+ Bpt : (x+ 2) 2 ≤ ( x-1) 2+ 9
Hay 4x+4 ≤ -2x+ 1+ 9
Suy ra: 6x ≤ 6
Do đó; x ≤ 1 và S2= ( -∞; 1]
Suy ra :
+ Xét bpt : mx+ 1> ( m-2) x+ m
Tương đương : 2x> m-1
Hay
từ đó tập nghiệm
+ Để hệ bpt vô nghiệm khi và chỉ khi
Suy ra :
Tìm m để hệ bất phương trình có nghiệm \(\left\{{}\begin{matrix}-x^2+2x+3\le0\\x+2m-1>0\end{matrix}\right.\)
Xét \(-x^2+2x+3\le0\Leftrightarrow\left[{}\begin{matrix}x\le-1\\x\ge3\end{matrix}\right.\)
Xét \(x+2m-1>0\Leftrightarrow x>-2m+1\)
Hệ đã cho có nghiệm với mọi m (đều chứa khoảng dương vô cùng)
Tìm m để hệ bất phương trình có nghiệm \(\left\{{}\begin{matrix}-x^2+2x+3\le0\\x+2m-1>0\end{matrix}\right.\)
\(\left\{{}\begin{matrix}-x^2+2x+3\le0\\x+2m-1>0\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}-1\le x\le3\\x>-2m+1\end{matrix}\right.\)
để pt ....thì \(-2m+1< 3\)
<=>\(-2m< 2\)
<=> \(m>1\)
vậy pt .....
Bài 3: Tìm m để bất phương trình: x2 - 2x + 1 - m2 ≤ 0 nghiệm đúng với ∀x ∈ [1; 2]. Bài 4: Tìm m để bất phương trình: (m - 1)x2 + (2 - m)x- 1 > 0 có nghiệm đúng với mọi∀x ∈ (1; 2). Bài 5: Tìm m để bất phương trình: 3(m - 2)x2 + 2(m + 1)x + m - 1 < 0 có nghiệm đúngvới mọi ∀x ∈ (-1; 3). Bài 6: Tìm m để bất phương trình m2 - 2mx + 4 > 0 có nghiệm đúng với mọi ∀x ∈ (-1;0,5)
3:
x^2-2x+1-m^2<=0
=>(x-1)^2-m^2<=0
=>(x-1)^2<=m^2
=>-m<=x-1<=m
=>-m+1<=x<=m+1
mà x thuộc [-1;2]
nên -m+1>=-1 và m+1<=2
=>-m>=-2 và m<=1
=>m<=2 và m<=1
=>m<=1
tìm các giá trị m để hệ bất phương trình sau có nghiệm : x2+2x-15<0 và (m +1)x>=3
bpt (1) \(\Leftrightarrow x\in\left(-5;3\right)\)=> S1=(-5;3)
bpt (2):
Nếu m=-1 =>S2=\(\varnothing\)
Nếu m>-1 =>S2=\(\left[\frac{3}{m+1};+\infty\right]\)
Nếu m<-1 => S2=\(\left[-\infty;\frac{3}{m+1}\right]\)
Hệ có nghiệm \(\Leftrightarrow S1\cap S2\ne\varnothing\)
Nếu m=-1 =>\(S1\cap S2=\varnothing\) (Loại)
Nếu m>-1 =>\(S1\cap S2\ne\varnothing\)
Nếu m<-1 =>\(S1\cap S2\ne\varnothing\)
vì sao mà hệ có nghiệm thì S1 giao S2 phải khác tập hợp rỗng ? mà tại sao bạn lại biện luận bất phương trình như vậy ?
nếu S1 giao S2 = rỗng thì hệ vô nghiệm
tìm các giá trị m để hệ bất phương trình sau có nghiệm : x2+2x-15<0 và (m +1)x>=3
Cho phương trình: mx² - 2x + m - 1 = 0 Tìm m để phương trình có nghiệm duy nhất Tìm m để phương trình có 2 nghiệm phân biệt Tìm m để phương trình có hai nghiệm x1,x2 thoả 3x1x2 - 2x1 - 2x2 = -2 Tìm hệ thức liên hệ giữa x1,x2 không phụ thuộc vào m
a: Th1: m=0
=>-2x-1=0
=>x=-1/2
=>NHận
TH2: m<>0
Δ=(-2)^2-4m(m-1)=-4m^2+4m+4
Để phương trình có nghiệm duy nhất thì -4m^2+4m+4=0
=>\(m=\dfrac{1\pm\sqrt{5}}{2}\)
b: Để PT có hai nghiệm phân biệt thì -4m^2+4m+4>0
=>\(\dfrac{1-\sqrt{5}}{2}< m< \dfrac{1+\sqrt{5}}{2}\)