Những câu hỏi liên quan
NA
Xem chi tiết
AH
20 tháng 6 2023 lúc 17:40

Lời giải:
Áp dụng định lý Pitago:

$BC=\sqrt{AB^2+AC^2}=\sqrt{12^2+16^2}=20$ (cm) 

Áp dụng tính chất tia phân giác:

$\frac{BD}{DC}=\frac{AB}{AC}=\frac{12}{16}=\frac{3}{4}$

Mà: $BD+DC=BC=20$

$\Rightarrow BD=20:(3+4).3=\frac{60}{7}$ (cm) 

Theo hệ thức lượng của tam giác vuông:

$HB=\frac{AB^2}{BC}=\frac{12^2}{20}=7,2$ (cm) 

$CH=BC-HB=20-7,2=12,8$ (cm) 

$HD=BD-BH=\frac{60}{7}-7,2=\frac{48}{35}$ (cm)

Bình luận (0)
AH
20 tháng 6 2023 lúc 17:44

Hình vẽ:

Bình luận (0)
QE
Xem chi tiết
H24
20 tháng 7 2021 lúc 10:10

Ta có: BC^2 = AB^2 + AC^2
= 12^2 + 16^2 = 400
=> BC = √400 = 20 (cm)
Δ ABC vuông có đường cao AH:
=> AB^2 = BH.BC
=> BH = AB^2/BC = 12^2/20 = 7.2 (cm)
=> CH = 20 - 7.2 = 12.8 (cm)
Ta có: AD là phân giác
=> BD/CD = AB/AC
=>( BD + CD)/CD = (AB + AC)/AC
=> 20/CD = 28/16
=> CD = 80/7
=> HD = CH - CD
= 12.8 - (80/7)
= 48/35 (cm)
(HC tự tính nha)

Bình luận (1)
NT
20 tháng 7 2021 lúc 10:15

undefined

Bình luận (0)
MD
Xem chi tiết
LM
13 tháng 10 2019 lúc 20:34

tính bc

tính bd,dc

tính hd,hb,hc

Bình luận (0)
CA
13 tháng 10 2019 lúc 20:52

tự vẽ hình..

\(BC=\sqrt{AC^2+AB^2}=\sqrt{12^2+16^2}=20cm\)( Định lý pitago cho tam giác vuông ABC)

\(\Rightarrow BH=\frac{AB^2}{BC}=\frac{12^2}{20}=7,2cm\)( Áp dụng hệ thức lương cho tam giác vuông ABC)

\(HC=BC-HB=20-7,2=12,8cm\)

Bình luận (0)
CA
13 tháng 10 2019 lúc 21:00

Áp dụng tính chất tia phân giác: \(\frac{BD}{AB}=\frac{CD}{AC}=\frac{BD+CD}{AB+AC}=\frac{BC}{12+16}=\frac{20}{12+16}=\frac{5}{7}\)

\(\Rightarrow BD=\frac{AB.5}{7}=\frac{12.5}{7}\approx8,571\)( chả biết ý này có đ ko nx)

Bình luận (1)
VP
Xem chi tiết
NT
1 tháng 7 2021 lúc 22:17

1) 

a) Xét ΔABC có 

\(BC^2=AC^2+AB^2\left(7.5^2=4.5^2+6^2\right)\)

nên ΔABC vuông tại A(Định lí Pytago đảo)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A, ta được:

\(AB\cdot AC=AH\cdot BC\)

\(\Leftrightarrow AH=\dfrac{AB\cdot AC}{BC}=\dfrac{4.5\cdot6}{7.5}=\dfrac{27}{7.5}=3.6\left(cm\right)\)

Vậy: AH=3,6cm

b) Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:

\(AC^2=AH^2+CH^2\)

\(\Leftrightarrow CH^2=4.5^2-3.6^2=7.29\)

hay CH=2,7(cm)

Ta có: BH+CH=BC(H nằm giữa B và C)

nên BH=BC-CH=7,5-2,7=4,8(cm)

Vậy: BH=4,8cm; CH=2,7cm

Bình luận (0)
EC
1 tháng 7 2021 lúc 22:22

1.a)Ta có:7,52=4,52+62 nên theo định lí Py-ta-go 

=>\(\Delta ABC\) vuông tại A

Ta có: AB.AC=BC.AH

=> \(AH=\dfrac{AC.AB}{BC}=\dfrac{4,5.6}{7,5}=3.6\)  (cm)

Bình luận (0)
EC
1 tháng 7 2021 lúc 22:28

b)Ta có:AB2=BC.BH

  \(\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{6^2}{7,5}=4,8\) (cm)

Ta có:BH+CH=BC

     =>CH=BC-BH=7,5-4,8=2,7 (cm)

 

Bình luận (0)
PP
Xem chi tiết
NV
12 tháng 7 2016 lúc 21:06

Ta có: BC2 = AB2 + AC2 \(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{12^2+16^2}=20cm\)

\(AB^2=HB.BC\Rightarrow HB=\frac{AB^2}{BC}=\frac{12^2}{20}=\frac{36}{5}=7,2cm\)

\(AC^2=HC.BC\Rightarrow HC=\frac{AC^2}{BC}=\frac{16^2}{20}=\frac{64}{5}=12,8cm\)

Vì AD là phân giác góc BAC nên ta có :

\(\frac{DB}{DC}=\frac{AB}{AC}=\frac{12}{16}=\frac{3}{4}\Rightarrow DC=\frac{4}{7}BC=\frac{4}{7}.20=\frac{80}{7}cm\)

=> HD = BC - (HB + DC) \(=20-\left(7,2+\frac{80}{7}\right)=\frac{48}{35}cm\)

                                  Vậy HB = 7,2cm ; HC = 12,8cm ; HD = 48/35cm

Bình luận (0)
SS
12 tháng 7 2016 lúc 21:26

Ngọc Vĩ ngủ trễ ko tôt đâu

Bình luận (0)
SS
12 tháng 7 2016 lúc 21:26

ngủ sớm như tôi cho khỏe nè

Bình luận (0)
H24
Xem chi tiết
NT
25 tháng 8 2021 lúc 0:41

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=9^2+12^2=225\)

hay BC=15cm

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=5,4cm\\CH=9,6cm\end{matrix}\right.\)

Bình luận (0)
ZT
Xem chi tiết
NT
20 tháng 7 2021 lúc 17:52

A B C D H 12 16

Xét tam giác ABC vuông tại A, đường cao AH

Áp dụng định lí Pytago tam giác ABC vuông tại A

\(BC^2=AB^2+AC^2=144+256=400\Rightarrow BC=20\)cm 

* Áp dụng hệ thức : \(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{144}{20}=\frac{36}{5}\)cm 

* Áp dụng hệ thức : \(AC^2=CH.BC\Rightarrow CH=\frac{AC^2}{BC}=\frac{256}{20}=12,8\)cm 

Vì AD là đường pg nên \(\frac{AB}{AC}=\frac{BD}{DC}\Rightarrow\frac{DC}{AC}=\frac{BD}{AB}\)

Áp dụng tunhs chất dãy tỉ số bằng nhau 

\(\frac{DC}{AC}=\frac{BD}{AB}=\frac{BC}{AB+AC}=\frac{20}{28}=\frac{5}{7}\)

\(\Rightarrow BD=\frac{5}{7}.AB=\frac{5}{7}.12=\frac{60}{7}\)cm 

=> \(HD=BD-BH=\frac{60}{7}-\frac{36}{5}=\frac{48}{35}\)cm 

Bình luận (0)
 Khách vãng lai đã xóa
UD
Xem chi tiết
PN
15 tháng 10 2017 lúc 18:40

Ta có: BC^2 = AB^2 + AC^2
= 12^2 + 16^2 = 400
=> BC = √400 = 20 (cm)
Δ ABC vuông có đường cao AH:
=> AB^2 = BH.BC
=> BH = AB^2/BC = 12^2/20 = 7.2 (cm)
=> CH = 20 - 7.2 = 12.8 (cm)
Ta có: AD là phân giác
=> BD/CD = AB/AC
=>( BD + CD)/CD = (AB + AC)/AC
=> 20/CD = 28/16
=> CD = 80/7
=> HD = CH - CD
= 12.8 - (80/7)
= 48/35 (cm)

Bình luận (0)
PT
15 tháng 10 2017 lúc 19:15

HB bạn kia tính đúng rồi, mình chỉ tính lại HD thôi nhá
AH= \(\sqrt{12^2-7,2^2}\)= 9,6

cosB = \(\frac{BH}{AB}\)\(\frac{7,2}{12}\)= 0,6 => B = 59 độ
\(\widehat{BAH}\)= 180-90-59= 31 độ
\(\widehat{HAD}\)= 90 :2 -31 = 14 độ
tan14= \(\frac{HD}{AH}\)\(\frac{HD}{9,6}\)= 0,22 (tan14=0,22)
=> HD= 2,112 cm
 

Bình luận (0)
PT
15 tháng 10 2017 lúc 19:20

Hình hơi xấu, thông cảm!!! :))

Bình luận (0)
H24
Xem chi tiết
NM
15 tháng 9 2021 lúc 14:33

\(BC=\sqrt{AB^2+AC^2}=20\left(cm\right)\left(pytago\right)\)

Áp dụng HTL tam giác

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=\dfrac{144}{20}=7,2\left(cm\right)\\CH=\dfrac{AC^2}{BC}=\dfrac{256}{20}=12,8\left(cm\right)\end{matrix}\right.\)

Vì AD là phân giác nên \(\dfrac{AB}{AC}=\dfrac{BD}{DC}=\dfrac{12}{16}=\dfrac{3}{4}\Rightarrow BD=\dfrac{3}{4}DC\)

Mà \(BD+DC=BC=20\Leftrightarrow\dfrac{7}{4}DC=20\Leftrightarrow DC=\dfrac{80}{7}\left(cm\right)\)

\(\Leftrightarrow HD=CH-CD=12.8-\dfrac{80}{7}=\dfrac{48}{35}\left(cm\right)\)

Bình luận (0)