Những câu hỏi liên quan
KR
Xem chi tiết
H24
Xem chi tiết
HP
5 tháng 1 2021 lúc 17:12

1.

Đặt \(x^2-2x+m=t\), phương trình trở thành \(t^2-2t+m=x\)

Ta có hệ \(\left\{{}\begin{matrix}x^2-2x+m=t\\t^2-2t+m=x\end{matrix}\right.\)

\(\Rightarrow\left(x-t\right)\left(x+t-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=t\\x=1-t\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=x^2-2x+m\\x=1-x^2+2x-m\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-x^2+3x\\m=-x^2+x+1\end{matrix}\right.\)

Phương trình hoành độ giao điểm của \(y=-x^2+x+1\) và \(y=-x^2+3x\):

\(-x^2+x+1=-x^2+3x\)

\(\Leftrightarrow x=\dfrac{1}{2}\Rightarrow y=\dfrac{5}{4}\)

Đồ thị hàm số \(y=-x^2+3x\) và \(y=-x^2+x+1\)

Dựa vào đồ thị, yêu cầu bài toán thỏa mãn khi \(m< \dfrac{5}{4}\)

Mà \(m\in\left[-10;10\right]\Rightarrow m\in[-10;\dfrac{5}{4})\)

Bình luận (1)
QM
Xem chi tiết
H9
29 tháng 7 2023 lúc 18:05

a) \(x-\sqrt{2x+3}=-2x\)

\(\Leftrightarrow\sqrt{2x+3}=x+2x\)

\(\Leftrightarrow\sqrt{2x+3}=3x\)

\(\Leftrightarrow2x+3=9x^2\)

\(\Leftrightarrow9x^2-2x-3=0\)

\(\Rightarrow\Delta=\left(-2\right)^2-4\cdot9\cdot\left(-3\right)=112>0\)

\(\Leftrightarrow\left[{}\begin{matrix}x_1=\dfrac{2+\sqrt{112}}{18}=\dfrac{1+2\sqrt{7}}{9}\\x_2=\dfrac{2-\sqrt{112}}{18}=\dfrac{1-2\sqrt{7}}{9}\end{matrix}\right.\)

b) \(\dfrac{1}{x}=1-\dfrac{1}{x+1}\) (ĐK: \(x\ne0,x\ne-1\))

\(\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{x+1}=1\)

\(\Leftrightarrow\dfrac{x+1}{x\left(x+1\right)}+\dfrac{x}{x\left(x+1\right)}=1\)

\(\Leftrightarrow\dfrac{x+1+x}{x\left(x+1\right)}=1\)

\(\Leftrightarrow\dfrac{2x+1}{x^2+x}=1\)

\(\Leftrightarrow2x+1=x^2+1\)

\(\Leftrightarrow x^2-2x=0\)

\(\Leftrightarrow x\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x-2=0\end{matrix}\right.\)

\(\Leftrightarrow x=2\left(tm\right)\)

Bình luận (0)
H9
29 tháng 7 2023 lúc 18:24

c) \(\dfrac{2}{\sqrt{x+3}}=\dfrac{1}{\sqrt{x^2-9}}\) (ĐK: \(x\ge3\))

\(\Leftrightarrow2\sqrt{x^2-2}=\sqrt{x+3}\)

\(\Leftrightarrow\sqrt{4\left(x^2-9\right)}=\sqrt{x+3}\)

\(\Leftrightarrow4\left(x^2-9\right)=x+3\)

\(\Leftrightarrow4x^2-36=x+3\)

\(\Leftrightarrow4x^2-x-36-3=0\)

\(\Leftrightarrow4x^2-x-39=0\)

\(\Rightarrow\Delta=\left(-1\right)^2-4\cdot4\cdot\left(-39\right)=625>0\)

\(\Leftrightarrow\left[{}\begin{matrix}x_1=\dfrac{1+\sqrt{625}}{8}=\dfrac{13}{4}\left(tm\right)\\x_2=\dfrac{1-\sqrt{625}}{8}=-3\left(ktm\right)\end{matrix}\right.\)

Bình luận (0)
DN
Xem chi tiết
KB
16 tháng 7 2021 lúc 21:21

\(\sqrt{3}cosx+2sin^2\left(\dfrac{x}{2}-\pi\right)=1\) 

\(\Leftrightarrow\sqrt{3}cosx+2sin^2\dfrac{x}{2}=1\)

\(\Leftrightarrow\sqrt{3}cosx-cosx=0\Leftrightarrow cosx=0\Leftrightarrow x=\dfrac{\pi}{2}+k\pi\) ( k thuộc Z )

Vậy ... 

Bình luận (0)
NL
16 tháng 7 2021 lúc 21:28

22.

Nhận thấy \(cosx=0\) không phải nghiệm, chia 2 vế cho \(cos^2x\)

\(3tan^2x+2tanx-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=-1\\tanx=\dfrac{1}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{4}+k\pi\\x=arctan\left(\dfrac{1}{3}\right)+k\pi\end{matrix}\right.\)

Nghiệm dương nhỏ nhất của pt là: \(x=arctan\left(\dfrac{1}{3}\right)\)

Bình luận (0)
NC
16 tháng 7 2021 lúc 21:33

22. PT đã cho tương đương

3 - 4cos2x + 2 sinxcosx = 0

⇔ 3 - 2 - 2cos2x + sin2x = 0

⇔ 1 - 2cos2x + sin2x = 0

⇔ 1 + sin2x = 2cos2x

⇔ sin\(\dfrac{\pi}{2}\) + sin2x = 2cos2x

⇔ \(2sin\left(\dfrac{\pi}{4}+x\right).cos\left(\dfrac{\pi}{4}-x\right)\) = 2cos2x

Do \(\left(\dfrac{\pi}{4}-x\right)+\left(\dfrac{\pi}{4}+x\right)=\dfrac{\pi}{2}\) 

⇒ \(sin\left(\dfrac{\pi}{4}+x\right)=cos\left(\dfrac{\pi}{4}-x\right)\)

Vậy sin2\(\left(x+\dfrac{\pi}{4}\right)\) = cos2x

Cái này là hiển nhiên ????

 

 

 

 

Bình luận (0)
H24
Xem chi tiết
NL
26 tháng 6 2021 lúc 21:35

Bài 1 :

Ta có : \(\dfrac{3x+5}{2}-1\le\dfrac{x+2}{3}+x\)

\(\Leftrightarrow\dfrac{3x+5}{2}-1-\dfrac{x+2}{3}-x\le0\)

\(\Leftrightarrow\dfrac{3\left(3x+5\right)-6-2\left(x+2\right)-6x}{6}\le0\)

\(\Leftrightarrow9x+15-6-2x-4-6x\le0\)

\(\Leftrightarrow x\le-5\)

\(\left\{{}\begin{matrix}x\in Z\\x>-10\end{matrix}\right.\)

Vậy \(x\in\left\{-5;-6;-7;-8;-9\right\}\)

Bình luận (0)
NH
26 tháng 6 2021 lúc 21:35

b3\(\Leftrightarrow2x^2+5x-3-3x+1\le x^2+2x-3+x^2-5\\ \Leftrightarrow0.x\le-6\Leftrightarrow x\in\varnothing\)

Bình luận (0)
TG
26 tháng 6 2021 lúc 21:41

undefined

undefined

Bình luận (0)
NA
Xem chi tiết
NT
28 tháng 1 2023 lúc 0:14

a: ĐKXĐ: x^2-2x<>0 và x^2-1>0

=>(x>1 và x<>2) hoặc x<-1

b: ĐKXĐ: x+1>0 và 5-3x>0

=>x>-1 và 3x<5

=>-1<x<5/3

c: DKXĐ: 5x+3>=0 và 3-x>0

=>x>=-3/5 và x<3

=>-3/5<=x<3

d: ĐKXĐ: 4-x^2>0 và 1+x>=0

=>x^2<4 và x>=-1

=>-2<x<2 và x>=-1

=>-1<=x<2

e: ĐKXĐ: 2-3x<>0 và 1-6x>0

=>x<>2/3 và x<1/6

=>x<1/6

Bình luận (0)
H24
Xem chi tiết
NL
14 tháng 1 2022 lúc 19:57

ĐKXĐ: \(x>\dfrac{1}{2}\)

\(log_{\dfrac{1}{2}}\left(\dfrac{x+1}{2x-1}\right)< 2\)

\(\Rightarrow\dfrac{x+1}{2x-1}>\dfrac{1}{4}\)

\(\Rightarrow x>-\dfrac{5}{2}\)

Kết hợp ĐKXĐ: \(\Rightarrow x>\dfrac{1}{2}\)

Bình luận (0)
NC
Xem chi tiết
MN
Xem chi tiết
NT
11 tháng 7 2023 lúc 22:00

1: Sửa đề: 2/x+2

\(\dfrac{2x+1}{x^2-4}+\dfrac{2}{x+2}=\dfrac{3}{2-x}\)

=>\(\dfrac{2x+1+2x-4}{x^2-4}=\dfrac{-3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)

=>4x-3=-3x-6

=>7x=-3

=>x=-3/7(nhận)

2: \(\Leftrightarrow\dfrac{\left(3x+1\right)\left(3-x\right)+\left(3+x\right)\left(1-3x\right)}{\left(1-3x\right)\left(3-x\right)}=2\)

=>9x-3x^2+3-x+3-9x+x-3x^2=2(3x-1)(x-3)

=>-6x^2+6=2(3x^2-10x+3)

=>-6x^2+6=6x^2-20x+6

=>-12x^2+20x=0

=>-4x(3x-5)=0

=>x=5/3(nhận) hoặc x=0(nhận)

3: \(\Leftrightarrow x\cdot\dfrac{8}{3}-\dfrac{2}{3}=1+\dfrac{5}{4}-\dfrac{1}{2}x\)

=>x*19/6=35/12

=>x=35/38

Bình luận (0)