chứng tỏ a chia hết cho 8 biết
a=1+72+73+...+798+799
Chứng tỏ A=70+71+72+73+.....+72020+72021 chia hết cho 8
\(A=\left(1+7\right)+...+7^{2020}\left(1+7\right)=8\left(1+...+7^{2020}\right)⋮8\)
\(A = (1 + 7) +...+7^2\)\(^0\)\(^2\)\(^0\) \((1 + 7) = 8 (1+...+7^2\)\(^0\)\(^2\)\(^0\)\() \) ⋮\(8\)
Bài 1 : a) Tìm 2 số tự nhiên biết tổng của ƯCLN và BCNN của chúng là 23
b) Chứng tỏ ( 10 ^ 2015 + 8 ) chia 72 là 1 số tự nhiên
c) Cho abcd ( thông số ) chia hết cho 7 . Chứng tỏ 2 * a + 3 *b + c chia hết cho 7
Bài 2 : Tìm 2 số a , b biết BCNN của chúng là 420 , ƯCLN là 21 và a + 21 = b
chứng tỏ :
a)1028+8 chia hết cho 72
b)88 +220 chia hết cho 17
c) cho A=2+22+23+...+260
chứng tỏ A chia hết cho 3;7;15
d)2n+11...1(có n chữsố 1)chia hết cho 3
e)10n+18n-1 chia hết cho27
g)10n+72n-1 chia hết cho 81
Chứng minh rằng:
A= 8 + 82+ 83 +. . . + 82019
Chia hết cho 8; 9; 72; 73.
Ta có :
A chia hết cho 8 vì mọi số hạng của A deduf chia hết cho 8 .
\(A=8+2^2+....+8^{2019}\)
\(\Rightarrow A=8\left(1+8\right)+.....+8^{2018}\left(1+8\right)\)
\(\Rightarrow A=8.9+.....+8^{2018}.9\)
=> A chia hết cho 9 .
Mà (8;9)=1
=> A chia hết cho 8x9=72
\(A=8\left(1+8+8^2\right)+....+8^{2017}\left(1+8+8^2\right)\)
\(A=8.73+....+8^{2017}.73\)
=> A chia hết cho 73
Chứng tỏ rằng :
A = \(8+8^2+8^3+...+8^{59}+8^{60}\)chia hết cho 73
A = 8 + 8^2 +8^3 +...+ 8^58+8^59+8^60
= (8+8^2 + 8^3) +...+ (8^58+8^59 +8^60)
=8( 1+8+8^2)+...+8^58(1+8+8^2)
= 8. 73 + ......+8^58 .73
= 73.( 8+...+8^58) chia hết cho 73
cho mình biết :chứng tỏ 10^28+8 chia hết cho 72
Cho A = 7+72+73+...7120
Chứng minh A chia hết 57?
(Kiểm tra cuối học kỳ 1 - THCS Phú Cát)
Ta xét biểu thức \(A_1=7+7^2+7^3\) \(=7\left(1+7+7^2\right)\) \(=57.7⋮57\)
\(A_2=7^4+7^5+7^6\) \(=7^4\left(1+7+7^2\right)\) \(=57.7^4⋮57\)
...
\(A_{40}=7^{118}+7^{119}+7^{120}\) \(=7^{118}\left(1+7+7^2\right)⋮57\)
Vậy \(A=\sum\limits^{40}_{i=1}A_i\) đương nhiên chia hết cho 57 (đpcm)
\(A=7+7^2+7^3+...+7^{120}\)
\(=\left(7+7^2+7^3\right)+\left(7^4+7^5+7^6\right)+...+\left(7^{118}+7^{119}+7^{120}\right)\)
\(=7.\left(1+7+7^2\right)+7^4.\left(1+7+7^2\right)+...+7^{118}.\left(1+7+7^2\right)\)
\(=7.57+7^4.57+..+7^{118}.57\)
\(=57.\left(7+7^4+...+7^{118}\right)\)
⇒ A chia hết cho 57
)Cho: C = 71 + 72 + 73 + 74 + … + 72010 Chứng minh rằng C chia hết cho 8 và 57.
b) Tìm số tự nhiên x để 4x + 19 chia hết cho x + 1
b) Để 4x + 19 chia hết cho x + 1 thì 15 chia hết cho x + 1
--> x + 1 là ước của 15
TH1: x + 1 = 15 <=> x = 14
TH2: x + 1 = 1 <=> x = 0
TH3: x + 1 = 3 <=> x = 2
TH4: x + 1 = 5 <=> x= 4
Cho A =7 + 72 + 73 + ... + 7119 + 7120. Chứng minh chia hết cho 57
\(A=7+7^2+7^3+...+7^{120}\\ A=\left(7+7^2+7^3\right)+...+\left(7^{118}+7^{119}+7^{120}\right)\\ A=7\times\left(1+7+7^2\right)+...+7^{118}\times\left(1+7+7^2\right)\\ A=7\times57+7^4\times57+...+7^{118}\times57\\ A=57\times\left(7+7^4+...+7^{118}\right)\\ \Rightarrow A⋮57\)
A = 7 + 72 + 73 + ... + 7119 + 7120
A = (71 + 72 + 73) + (74 + 75 + 76) + ... + (7118 + 7119 + 7120)
A = 7(1 + 7 + 72) + 74(1 + 7 + 72) + ... + 7118(1 + 7 + 72)
A = 7.57 + 74.57 + ... + 7118.57
A = 57(7 + 74 + ... + 7118)
Vì 57 ⋮ 57 nên 57(7 + 74 + ... + 7118) ⋮ 57
Cho A = 7 + 72 + 73 + 74 + 75 + 76 +77 + 78 chứng tỏ tổng A chia hết cho 5. Hộ mik với ạ mik sắp thi r mà bài này cô mới gửi mik ko bt làm ai giúp mik nhanh vs ạ. C.ơn nhìu
\(A=7+7^2+7^3+7^4+7^5+7^6+7^7+7^8\)
\(A=\left(7+7^3\right)+\left(7^2+7^4\right)+\left(7^5+7^7\right)+\left(7^6+7^8\right)\)
\(A=7\cdot\left(7+7^2\right)+7^2\cdot\left(1+7^2\right)+7^5\cdot\left(1+7^2\right)+7^6\cdot\left(1+7^2\right)\)
\(A=7\cdot50+7^2\cdot50+7^5\cdot50+7^6\cdot50\)
\(A=50\cdot\left(7+7^2+7^5+7^6\right)\)
\(A=5\cdot10\cdot\left(7+7^2+7^5+7^6\right)\)
Ta có: 5 ⋮ 5
⇒ \(A=5\cdot10\cdot\left(7+7^2+7^5+7^6\right)\) ⋮ 5 (đpcm)
A = 7 + 72 + 73 + 74 + 75 + 76 + 77 + 78
A = (7 + 73) + (72+ 74) + (75 + 77) + (76 + 78)
A = 7.(1 + 72) + 72.(1 + 72) + 75.(1 + 72) + 76.(1 + 72)
A = 7.( 1 + 49) + 72.( 1 + 49) + 75.(1 + 49) + 76. (1 + 49)
A = 7.50 + 72.50 + 75.40 + 76.50
A = 50.(7 + 72 + 75 + 76)
Vì 50 ⋮ 5 nên A = 50.(7 + 72 + 76) ⋮ 5 đpcm
A = 7 + 72 + 73 + 74 + 75 + 76 + 77 + 78
A = (7 + 73) + (72+ 74) + (75 + 77) + (76 + 78)
A = 7.(1 + 72) + 72.(1 + 72) + 75.(1 + 72) + 76.(1 + 72)
A = 7.( 1 + 49) + 72.( 1 + 49) + 75.(1 + 49) + 76. (1 + 49)
A = 7.50 + 72.50 + 75.50 + 76.50
A = 50.(7 + 72 + 75 + 76)
Vì 50 ⋮ 5 nên A = 50.(7 + 72 + 76) ⋮ 5 đpcm