\(\sqrt{\dfrac{x+56}{16}+\sqrt{x-8}}=\dfrac{x}{8}\) gpt giúp mik nha
gpt:
\(a,\sqrt{2x+4}-2\sqrt{2-x}=\dfrac{6x-4}{\sqrt{x^2+4}}\)
b) \(\sqrt{\dfrac{6}{3-x}}+\sqrt{\dfrac{8}{2-x}}=6\)
tìm x giải cả cách làm ra luôn nha
a/ \(\dfrac{\sqrt{x}}{\sqrt{x}-3}\) b/ \(\dfrac{\sqrt[]{x}}{\sqrt[]{x}+6}\)
giúp mik nha chiều mik nộp,cảm ơn
Bạn ghi thiếu đề hoặc đề sai không vậy??
Biểu thức không bằng một giá trị nào đó thì sao tìm x được :>
a) Để \(\dfrac{\sqrt{x}}{\sqrt{x}-3}\) có nghĩa khì \(x\ge0;x\ne9\)
b) Để \(\dfrac{\sqrt{x}}{\sqrt{x}+6}\) có nghĩa khi \(x\ge0\)
GPT :
\(\dfrac{4}{x}+\sqrt{x-\dfrac{1}{x}}=x+\sqrt{2x-\dfrac{5}{x}}\)
Lời giải:
ĐKXĐ:.......
$PT\Leftrightarrow \frac{4}{x}-x=\sqrt{2x-\frac{5}{x}}-\sqrt{x-\frac{1}{x}}$
$\Leftrightarrow \frac{4}{x}-x = \frac{(2x-\frac{5}{x})-(x-\frac{1}{x})}{\sqrt{2x-\frac{5}{x}}+\sqrt{x-\frac{1}{x}}}$
$\Leftrightarrow \frac{4}{x}-x = \frac{x-\frac{4}{x}}{\sqrt{2x-\frac{5}{x}}+\sqrt{x-\frac{1}{x}}}$
$\Leftrightarrow (\frac{4}{x}-x)\left[1+\frac{1}{\sqrt{2x-\frac{5}{x}}+\sqrt{x-\frac{1}{x}}}\right]=0$
Hiển nhiên biểu thức trong ngoặc vuông luôn dương nên $\frac{4}{x}-x=0$
$\Rightarrow 4-x^2=0$
$\Leftrightarrow x=\pm 2$
Thử lại thấy $x=2$ thỏa mãn.
Vậy.......
\(\Leftrightarrow x-\dfrac{4}{x}=\sqrt{x-\dfrac{1}{x}}-\sqrt{2x-\dfrac{5}{x}}\)
\(x-\dfrac{4}{x}=\dfrac{\dfrac{4}{x}-x}{\sqrt{x-\dfrac{1}{x}}+\sqrt{2x-\dfrac{5}{x}}}\)
x-4/x>0
=>4/x-x<0
=>Loại
x-4/x<0
=>4/x-x>0
=>Mâu thuẫn
=>Loại
Do đó, chỉ có 1 trường hợp là x-4/x=0
=>x=2
Rút gọn biểu thức:
B=\(\dfrac{\sqrt{x}-1}{\sqrt{x}-2}-\dfrac{5\sqrt{x}-8}{x-2\sqrt{x}}\) với x>0;x\(\ne\)4,x\(\ne\)16
\(=>B=\dfrac{\left(\sqrt{x}-1\right)\sqrt{x}-5\sqrt{x}+8}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(B=\dfrac{x-\sqrt{x}-5\sqrt{x}+8}{\sqrt{x}\left(\sqrt{x}-2\right)}=\dfrac{x-6\sqrt{x}+8}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(B=\dfrac{\left(\sqrt{x}-4\right)\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}-4}{\sqrt{x}}\)
Ta có: \(B=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}-\dfrac{5\sqrt{x}-8}{x-2\sqrt{x}}\)
\(=\dfrac{x-\sqrt{x}-5\sqrt{x}+8}{\sqrt{x}\cdot\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x-6\sqrt{x}+8}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\dfrac{\sqrt{x}-4}{\sqrt{x}-2}\)
Cho \(A=\dfrac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{1-\dfrac{8}{x}+\dfrac{16}{x^2}}}\)
a) Rút gọn A
\(A=\dfrac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{1-\dfrac{8}{x}+\dfrac{16}{x^2}}}\)
\(=\dfrac{\sqrt{\left(x-4\right)+4\sqrt{x-4}+4}+\sqrt{\left(x-4\right)-4\sqrt{x-4}+4}}{\sqrt{\left(\dfrac{4}{x}-1\right)^2}}\)
\(=\dfrac{\sqrt{\left(\sqrt{x-4}+2\right)}^2+\sqrt{\left(\sqrt{x-4}-2\right)}^2}{\left|\dfrac{4}{x}-1\right|}\)
\(=\dfrac{\left|\sqrt{x-4}+2\right|+\left|\sqrt{x-4}-2\right|}{\left|\dfrac{4}{x}-1\right|}\)
Help
Cho hai biểu thức \(A=\dfrac{7}{\sqrt{x+8}}\)và \(B=\dfrac{\sqrt{x}}{\sqrt{x-3}}+\dfrac{2\sqrt{x-24}}{x-9}\)với x > 0 ; x khác 9
Tính giá trị của A khi x = 16
Gpt: \(\sqrt{x-\dfrac{1}{x}}+\sqrt{1-\dfrac{1}{x}}=x\)
Gpt: \(\sqrt{x-\dfrac{1}{x}}+\sqrt{1-\dfrac{1}{x}}=x\)
\(\left(6\right)\dfrac{3\sqrt{x}}{5\sqrt{x}-1}\le-3\)
\(\left(7\right)\dfrac{8\sqrt{x}+8}{6\sqrt{x}+9}>\dfrac{8}{3}\)
\(\left(8\right)\dfrac{\sqrt{x}-2}{2\sqrt{x}-3}< -4\)
\(\left(9\right)\dfrac{4\sqrt{x}+6}{5\sqrt{x}+7}\le-\dfrac{2}{3}\)
\(\left(10\right)\dfrac{6\sqrt{x}-2}{7\sqrt{x}-1}>-6\)
6:ĐKXĐ: x>=0; x<>1/25
BPT=>\(\dfrac{3\sqrt{x}}{5\sqrt{x}-1}+3< =0\)
=>\(\dfrac{3\sqrt{x}+15\sqrt{x}-5}{5\sqrt{x}-1}< =0\)
=>\(\dfrac{18\sqrt{x}-5}{5\sqrt{x}-1}< =0\)
=>\(\dfrac{1}{5}< \sqrt{x}< =\dfrac{5}{18}\)
=>\(\dfrac{1}{25}< x< =\dfrac{25}{324}\)
7:
ĐKXĐ: x>=0
BPT \(\Leftrightarrow\dfrac{\sqrt{x}+1}{2\sqrt{x}+3}>\dfrac{8}{3}:\dfrac{8}{3}=1\)
=>\(\dfrac{\sqrt{x}+1}{2\sqrt{x}+3}-1>=0\)
=>\(\dfrac{\sqrt{x}+1-2\sqrt{x}-3}{2\sqrt{x}+3}>=0\)
=>\(-\sqrt{x}-2>=0\)(vô lý)
8:
ĐKXĐ: x>=0; x<>9/4
BPT \(\Leftrightarrow\dfrac{\sqrt{x}-2}{2\sqrt{x}-3}+4< 0\)
=>\(\dfrac{\sqrt{x}-2+8\sqrt{x}-12}{2\sqrt{x}-3}< 0\)
=>\(\dfrac{9\sqrt{x}-14}{2\sqrt{x}-3}< 0\)
TH1: 9căn x-14>0 và 2căn x-3<0
=>căn x>14/9 và căn x<3/2
=>14/9<căn x<3/2
=>196/81<x<9/4
TH2: 9căn x-14<0 và 2căn x-3>0
=>căn x>3/2 hoặc căn x<14/9
mà 3/2<14/9
nên trường hợp này Loại
9:
ĐKXĐ: x>=0
\(BPT\Leftrightarrow\dfrac{2\sqrt{x}+3}{5\sqrt{x}+7}< =-\dfrac{1}{3}\)
=>\(\dfrac{2\sqrt{x}+3}{5\sqrt{x}+7}+\dfrac{1}{3}< =0\)
=>\(\dfrac{6\sqrt{x}+9+5\sqrt{x}+7}{3\left(5\sqrt{x}+7\right)}< =0\)
=>\(\dfrac{11\sqrt{x}+16}{3\left(5\sqrt{x}+7\right)}< =0\)(vô lý)
10:
ĐKXĐ: x>=0; x<>1/49
\(BPT\Leftrightarrow\dfrac{6\sqrt{x}-2}{7\sqrt{x}-1}+6>0\)
=>\(\dfrac{6\sqrt{x}-2+42\sqrt{x}-6}{7\sqrt{x}-1}>0\)
=>\(\dfrac{48\sqrt{x}-8}{7\sqrt{x}-1}>0\)
=>\(\dfrac{6\sqrt{x}-1}{7\sqrt{x}-1}>0\)
TH1: 6căn x-1>0 và 7căn x-1>0
=>căn x>1/6 và căn x>1/7
=>căn x>1/6
=>x>1/36
TH2: 6căn x-1<0 và 7căn x-1<0
=>căn x<1/6 và căn x<1/7
=>căn x<1/7
=>0<=x<1/49