\(\sqrt{\dfrac{x+56}{16}+\sqrt{x-8}}=\dfrac{x}{8}\) (1). Điều kiện: \(x\ge8\)
\(\Leftrightarrow\sqrt{\dfrac{x-8}{16}+2\times2\times\dfrac{\sqrt{x-8}}{4}+4}=\dfrac{x}{8}\)
\(\Leftrightarrow\sqrt{\left(\dfrac{\sqrt{x-8}}{4}+2\right)^2}=\dfrac{x}{8}\)
\(\Leftrightarrow\dfrac{\sqrt{x-8}}{4}+2=\dfrac{x}{8}\) \(\left(\dfrac{\sqrt{x-8}}{4}+2\ge\dfrac{9}{4}>0\right)\)
\(\Leftrightarrow2\sqrt{x-8}+16=x\)
\(\Leftrightarrow x-8-2\sqrt{x-8}+1=9\)
\(\Leftrightarrow\left(\sqrt{x-8}-1\right)^2=9\)
\(\Leftrightarrow\sqrt{x-8}-1=3\) \(\left(\sqrt{x-8}-1\ge-1>-3\right)\)
\(\Leftrightarrow\sqrt{x-8}=4\)
\(\Leftrightarrow x=24\left(\text{nhận}\right)\)
Vậy (1) có tập no \(S=\left\{24\right\}\).