tìm số tự nhiên n để mỗi phép chia sau là phép chia hết:
(x^4y^4-2x^2y^2):x^ny^n
Tìm số tự nhiên n để mỗi phép chia sau là phép chia hết:
a) x^ny^3:x^2y^n+1
b) x^2n+3:x^n-1
Các bạn giúp tớ với!!
Tìm số tự nhiên n để phép chia sau là phép chia hết
\(\left(8x^2y^3-6x^4y^2+\frac{1}{2}x^3y^3\right):2x^{n-1}y^n\)
1.tìm n để mỗi phép chia sau là phép chia hết:
a.(5x^3-7x^2+x):3x^n
b.(13x^4y^3-5x^3y^3+6x^2y^2):5x^ny^
2.làm tính chia: (x^3+8y^3):(x+2y)
Tìm số tự nhiên n để mỗi phép chia sau là phép chia hết :
a) \(x^4:x^n\)
b) \(x^n:x^3\)
c) \(5x^ny^3:4x^2y^2\)
d) \(x^ny^{n+1}:x^2y^5\)
Tìm n thuộc N để mỗi phép chia sau là phép chia hết
a)\(35x^9y^n:\left(-7x^7y^2\right)\)
b)\(\left(5x^3-7x^2+x\right):3x^n\)
c)\(\left(13x^4y^3-5x^3y^3+6x^2y^2\right):5x^ny^n\)
a) \(35x^9y^n=5.\left(7x^9y^n\right)\)
Để \(35x^9y^n⋮\left(-7x^7y^2\right)\)
\(\Rightarrow n\in\left\{0;1;2\right\}\)
b) \(5x^3-7x^2+x=3x\left(\dfrac{5}{3}x^2-\dfrac{7}{3}x+\dfrac{1}{3}\right)\)
Để \(\left(5x^3-7x^2+x\right)⋮3x^n\)
\(\Rightarrow3x\left(\dfrac{5}{3}x^2-\dfrac{7}{3}x+\dfrac{1}{3}\right)⋮3x^n\)
\(\Rightarrow n\in\left\{0;1\right\}\)
Tìm n thuộc N* để phép chia là phép chia hết :
a, (x^2-x^5+8x^6) : 2x^n
b, ( 4x^2y^3-3x^3y^2-2x^3y^3) : (-x^ny^n)
Bài 5.5: Tìm x: (2x-3)(x+1)+(4x\(^3\)-6x\(^2\)-6x):(-2x)=18
Bài 6.1: Tìm số tự nhiên n để: 5x\(^{n-2}\):3x\(^2\)
Bài 6.2: Tìm số tự nhiên n để đa thức x\(^{n-1}\)-3x\(^2\):2x\(^2\)
Bài 6.3: Tìm n ∈ N để phép tính chia sau là phép chia hết:
3x\(^7\)y\(^7\)-4x\(^6\)y\(^6\)-5x\(^3\)y\(^3\):(2x\(^n\)y\(^n\))
Trả lời nhanh giúp mìn nhóe!
Bài 5.5:
\(\left(2x-3\right)\left(x+1\right)+\left(4x^3-6x^2-6x\right):\left(-2x\right)=18\)
\(\Leftrightarrow\left(2x^2+2x-3x-3\right)+2x\cdot\left(2x^2-3x-3\right):\left(-2x\right)=18\)
\(\Leftrightarrow2x^2-x-3-2x^2+3x+3=18\)
\(\Leftrightarrow2x=18\)
\(\Leftrightarrow x=\dfrac{18}{2}\)
\(\Leftrightarrow x=9\)
Tìm n để mỗi phép chia sau là phép chia hết (n là số tự nhiên) 5 x 3 - 7 x 2 + x : 3 x n
Vì đa thức 5 x 3 - 7 x 2 + x chia hết cho 3 x n nên mỗi hạng tử của đa thức chia hết cho x n
=> hạng tử x – có số mũ nhỏ nhất của đa thức chia hết cho 3 x n
Do đó, x : x n ⇒ 0 ≤ x ≤ 1 . Vậy n ∈ {0; 1}
Tìm n \(\left(n\in\mathbb{N}\right)\) để mỗi phép chia sau đây là phép chia hết
a) \(\left(x^5-2x^3-x\right):7x^n\)
b) \(\left(5x^5y^5-2x^3y^3-x^2y^2\right):2x^ny^n\)
a: Để đây là phép chia hết thì 1-n>0
hay n<=1
mà n là số tự nhiên
nên \(n\in\left\{0;1\right\}\)
b: Để đây là phép chia hết thì 2-n>=0
hay n<=2
mà n là số tự nhiên
nên \(n\in\left\{0;1;2\right\}\)