So sánh:
A=10001001
B=11+22+33+.....+10001001
Bài 1: So sánh:
a, \(2\sqrt{31}\) và 10
b, \(2+\sqrt{3}\) và \(3+\sqrt{2}\)
c, \(\sqrt{21}+\sqrt{10}\) và \(\sqrt{6}+\sqrt{35}\)
d, \(\sqrt{39}+\sqrt{22}\) và \(\sqrt{26}+\sqrt{33}\)
Bài 2 : Giải các phương trình sau :
a, \(\sqrt{3x+1}=\sqrt{10}\)
b, \(\sqrt{x-7}+3=0\)
c, \(\sqrt{x^2-10x+25}\)\(=7-2x\)
d, \(\sqrt{x^2-2x+1}=\sqrt{6+4\sqrt{2}}+\sqrt{6-4\sqrt{2}}\)
e, \(\sqrt{x^2-6x+9}=\sqrt{4x^2+4x+1}\)
Mọi người giúp em với nha !!
Mọi người biết câu nào thì giúp em câu đó cũng được.
So sánh:
a) 32 và 3.2; b; 23 và 32; c) 33 và 34.
a) 3^2 và 3.2
3^2=9
3.2=6
-> 3^2>3.2
b)2^3 và 3^2
2^3=8
3^2=9
-> 2^3<3^2
c) 3^3 và 3^4
Vì hai số có cùng cơ số nên ta so sánh số mũ
3<4
-> 3^3<3^4
a)ta có 32=9 ; 3.2=6 => 32 > 3.2
b)ta có 23=8 ; 32=9 => 23 < 32
c) ta có 33 và 34
vì 2 số đều cùng 1 cơ số
mà cơ số đầu có số mũ = 3,cơ số còn lại có lũy thừa =4
=> 3<4
=> 33<34
a) 3^2 và 3.2
3^2=9
3.2=6
-> 3^2>3.2
b)2^3 và 3^2
2^3=8
3^2=9
-> 2^3<3^2
1.So sánh:
a, 2 mũ 6 và 6 mũ 2
b, 73+1 và 7 và 73 + 1
c, 1314 - 1313 và 1315 - 1314
d, 32+n và 23+n (n e N *)
2. Rút gọn mỗi biểu thức sau:
a) A= 1+3+32+33+.....+399+3100
b) B= 2100-299+298-297+....-23+22-2+1
So sánh:
A = 1+2+22+23+...+22022 và B = 5. 22021
nhanh hộ mình với
\(A=1+2+2^2+...+2^{2022}\)
\(\Rightarrow2A=2+2^2+...+2^{2023}\)
\(\Rightarrow2A-A=2^{2023}-1\)
\(\Rightarrow A=2^{2023}-1\)
\(\Rightarrow A< 2^{2023}=2^2.2^{2021}=4.2^{2021}< 5^{2021}\)
\(\Rightarrow A< B\)
so sánh:a) 11/-13 và -14/15
\(\dfrac{11}{-13}=-\dfrac{11}{13}=-\dfrac{13}{13}+\dfrac{2}{13}=-1+\dfrac{2}{13}\\ -\dfrac{14}{15}=-\dfrac{15}{15}+\dfrac{1}{15}=-1+\dfrac{1}{15}\)
Ta thấy : \(\dfrac{1}{15}< \dfrac{1}{13}< \dfrac{2}{13}=>-1+\dfrac{1}{15}< -1+\dfrac{2}{13}\)
hay \(\dfrac{11}{-13}>-\dfrac{14}{15}\)
so sánh:
A=1/2+1/22+1/23+...+1/22020+1/22021 và B=1/3+1/4+1/5+13/60
A=1/2+1/22+1/23+...+1/22020+1/22021 > B=1/3+1/4+1/5+13/60
So sánh:A=10^11-1/10^12-1 và B=10^10-1/10^11-1
1,Tìm x:
a,2x=16 b,x3=27 c,x50=x d,(x - 22)=16
2,So sánh:a,2300 và 3200
b,3500 và 7300
a) \(2^x=16=2^4\Rightarrow x=4\)
b) \(x^3=27=3^3\Rightarrow x=3\)
c) \(x^{50}=x\Rightarrow x\left(x^{49}-1\right)=0\Rightarrow x=0\) hay \(x=1\)
d) \(\left(x-2\right)^2=16=4^2\Rightarrow x-2=4\) hay \(x-2=-4\)
\(\Rightarrow x=6\) hay \(x=-2\)
a) \(2^{300}=2^{3.100}=8^{100}\)
\(3^{200}=3^{2.100}=9^{100}\)
vì \(8^{100}< 9^{100}\)
\(\Rightarrow2^{300}< 3^{200}\)
b) \(3^{500}=3^{5.100}=243^{100}\)
\(7^{300}=7^{3.100}=343^{100}\)
vì \(243^{100}< 343^{100}\)
\(\Rightarrow3^{500}< 7^{300}\)
`@` `\text {Ans}`
`\downarrow`
`1,`
`a,`
`2^x = 16`
`=> 2^x = 2^4`
`=> x = 4`
Vậy, `x = 4`
`b,`
`x^3 = 27`
`=> x^3 = 3^3`
`=> x = 3`
Vậy, `x = 3`
`c,`
\(x^{50}=x\)
`=>`\(x^{50}-x=0\)
`=>`\(x\left(x^{49}-1\right)=0\)
`=>`\(\left[{}\begin{matrix}x=0\\x^{49}-1=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=0\\x^{49}=1\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
Vậy, `x \in {0; 1}`
`d,`
`(x-2^2)=16`
`=> x - 2^2 = 16`
`=> x = 16 + 2^2`
`=> x = 20`
Vậy, `x = 20`
`2,`
`a,`
Ta có:
\(2^{300}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=\left(3^2\right)^{100}=9^{100}\)
Vì `8 < 9 =>`\(8^{100}< 9^{100}\)
`=>`\(2^{300}< 3^{200}\)
Vậy, \(2^{300}< 3^{200}\)
`b,`
Ta có:
\(3^{500}=\left(3^5\right)^{100}=243^{100}\)
\(7^{300}=\left(7^3\right)^{100}=343^{100}\)
Vì `243 < 343 =>`\(243^{100}< 343^{100}\)
`=>`\(3^{500}< 7^{300}\)
Vậy, \(3^{500}< 7^{300}.\)
so sánh:a. 202^303 và 303^202
b. 11^1979 và 37^1320
giúp mình với
\(\text{#040911}\)
\(a,\)
\(202^{303}\text{ và }303^{202}\)
Ta có:
\(202^{303}=\left(202^3\right)^{101}=\left(101^3\cdot2^3\right)^{101}=\left(101^3\cdot8\right)^{101}\)
\(303^{202}=\left(303^2\right)^{101}=\left(101^2\cdot3^2\right)^{101}=\left(101^2\cdot9\right)^{101}\)
Ta có:
\(8\cdot101^3=8\cdot101\cdot101^2=808\cdot101^2\)
Vì \(808>9\)
\(\Rightarrow808\cdot101^2>9\cdot101^2\)
\(\Rightarrow202^{303}>303^{202}\)
\(b,\)
Ta có:
\(11^{1979}< 11^{1980}=\left(11^3\right)^{660}=1331^{660}\\ 37^{1320}=\left(37^2\right)^{660}=1369^{660}\\ \text{Vì }1331< 1369\\ \Rightarrow1331^{660}< 1369^{660}\\ \Rightarrow11^{1979}< 37^{1320}\)
a) \(202^{303}=\left(202^3\right)^{101}=8242408^{101}\)
\(303^{202}=\left(303^2\right)^{101}=91809^{101}< 8242408^{101}\)
\(202^{303}>303^{202}\)
So sánh:A=2^18-3/2^20-3 và B=2^20-3/2^22-3
Các bạn giúp mình nha! Mình cần gấp.