giúp mink với : \(tan^2x+cot^2x=\dfrac{1}{2}\left(tanx+cotx\right)+1\) với x \(\in\) (0;2\(\pi\))
tìm số nghiệm pt trên
Giải phương trình:
\(2\left(Tan^2x-Cot^2x\right)-5\left(Tanx+Cotx\right)+6=0\)
Giải pt sau:
\(2\left(Tan^2x-Cot^2x\right)-5\left(Tanx+Cotx\right)+6=0\)
chứng minh rằng
a) tanx(cot\(^2\)x - 1) = cotx(1 - tan\(^2\)x)
b) tan\(^2\)x - sin\(^2\)x = tan\(^2\)x.sin\(^2\)x
c) \(\dfrac{cos^2x-sin^2x}{cot^2x-tan^2x}\) - cos\(^2\)x = - cos\(^4\)x
a: tan x(cot^2x-1)
\(=\dfrac{1}{cotx}\left(cot^2x-cotx\cdot tanx\right)\)
=cotx-tanx/cotx=cotx(1-tan^2x)
b: \(tan^2x-sin^2x=\dfrac{sin^2x}{cos^2x}-sin^2x\)
\(=sin^2x\left(\dfrac{1}{cos^2x}-1\right)=sin^2x\cdot\dfrac{sin^2x}{cos^2x}=sin^2x\cdot tan^2x\)
c: \(\dfrac{cos^2x-sin^2x}{cot^2x-tan^2x}=\dfrac{cos^2x-sin^2x}{\dfrac{cos^2x}{sin^2x}-\dfrac{sin^2x}{cos^2x}}\)
\(=\left(cos^2x-sin^2x\right):\dfrac{cos^4x-sin^4x}{sin^2x\cdot cos^2x}\)
\(=\dfrac{sin^2x\cdot cos^2x}{1}=sin^2x\cdot cos^2x\)
=>sin^2x*cos^2x-cos^2x=cos^2x(sin^2x-1)
=-cos^2x*cos^2x=-cos^4x
=>ĐPCM
c1 có bao nhiêu giá trị nguyên của m để pt cos2x+sinx+m=0 có nghiệm \(x\in\left[-\dfrac{\pi}{6},\dfrac{\pi}{4}\right]\), câu này tui tìm được 2 giá trị mà đáp án lại là 3 nên mong lung ..
c2 tìm số nghiệm của pt \(\dfrac{tan^2x-tanx+cot^2x-cotx-2}{sin2x-1}=0\) thuộc khoảng ( pi, 3pi)
1.
\(\Leftrightarrow1-2sin^2x+sinx+m=0\)
\(\Leftrightarrow2sin^2x-sinx-1=m\)
Đặt \(sinx=t\Rightarrow t\in\left[-\dfrac{1}{2};\dfrac{\sqrt{2}}{2}\right]\)
Xét hàm \(f\left(t\right)=2t^2-t-1\) trên \(\left[-\dfrac{1}{2};\dfrac{\sqrt{2}}{2}\right]\)
\(-\dfrac{b}{2a}=\dfrac{1}{4}\in\left[-\dfrac{1}{2};\dfrac{\sqrt{2}}{2}\right]\)
\(f\left(-\dfrac{1}{2}\right)=0\) ; \(f\left(\dfrac{1}{4}\right)=-\dfrac{9}{8}\) ; \(f\left(\dfrac{\sqrt{2}}{2}\right)=-\dfrac{\sqrt{2}}{2}\)
\(\Rightarrow-\dfrac{9}{8}\le f\left(t\right)\le0\Rightarrow-\dfrac{9}{8}\le m\le0\)
Có 2 giá trị nguyên của m (nếu đáp án là 3 thì đáp án sai)
2.
ĐKXĐ: \(sin2x\ne1\Rightarrow x\ne\dfrac{\pi}{4}\) (chỉ quan tâm trong khoảng xét)
Pt tương đương:
\(\left(tan^2x+cot^2x+2\right)-\left(tanx+cotx\right)-4=0\)
\(\Leftrightarrow\left(tanx+cotx\right)^2+\left(tanx+cotx\right)-4=0\)
\(\Rightarrow\left[{}\begin{matrix}tanx+cotx=\dfrac{1+\sqrt{17}}{2}\\tanx+cotx=\dfrac{1-\sqrt{17}}{2}\left(loại\right)\end{matrix}\right.\)
Nghiệm xấu quá, kiểm tra lại đề chỗ \(-tanx+...-cotx\) có thể 1 trong 2 cái đằng trước phải là dấu "+"
Miền \(\left[-\dfrac{\pi}{3};\dfrac{\pi}{2}\right]\) là cung tròn CAB
Chiếu cung tròn lên trục cos (trục ngang) được đoạn màu đỏ, với O có hoành độ bằng 0, A có hoành độ bằng 1
Do đó miền giá trị của cos trên \(\left[-\dfrac{\pi}{3};\dfrac{\pi}{2}\right]\) là \(\left[0;1\right]\) hay đoạn OA
chứng minh đẳng thức lượng giác sau không phụ thuộc vào x:\(\frac{tan^2x-cos^2x}{sin^2x}+\frac{cot^2x-sin^2x}{cos^2x}+\left(tanx-cotx\right)^2-\left(tanx+cotx\right)^2\)
giải phương trình
a) \(tanx=1\)
b) \(tanx=tan55\) độ
c) \(tan2x=tan\dfrac{\pi}{5}\)
d) \(tan\left(2x+\dfrac{\pi}{3}\right)\)= 0
e) \(cot\left(x-\dfrac{\pi}{3}\right)=0\)
Để giải các phương trình này, chúng ta cần sử dụng các quy tắc và công thức của hàm lượng giác. Hãy xem xét từng phương trình một cách cụ thể:
a) Để giải phương trình tan(x) = 1, chúng ta có thể sử dụng công thức x = arctan(1) để tìm giá trị của x.
b) Để giải phương trình tan(x) = tan(55°), chúng ta có thể sử dụng công thức x = arctan(tan(55°)) để tìm giá trị của x.
c) Để giải phương trình tan(2x) = tan(π/5), chúng ta có thể sử dụng công thức 2x = arctan(tan(π/5)) để tìm giá trị của 2x, sau đó chia kết quả cho 2 để tìm giá trị của x.
d) Để giải phương trình tan(2x+π/3) = 0, chúng ta có thể sử dụng công thức 2x+π/3 = arctan(0) để tìm giá trị của 2x+π/3, sau đó giải phương trình để tìm giá trị của x.
e) Để giải phương trình cot(x-π/3) = 0, chúng ta có thể sử dụng công thức x-π/3 = arccot(0) để tìm giá trị của x-π/3, sau đó giải phương trình để tìm giá trị của x.
Hy vọng những thông tin này sẽ giúp bạn giải quyết các phương trình trên. Nếu bạn cần thêm thông tin hoặc giải thích chi tiết hơn, xin vui lòng cho biết.
a: tan x=1
=>tan x=tan(pi/4)
=>x=pi/4+kpi
b: tan x=tan 55 độ
=>x=55 độ+k*180 độ
c: tan 2x=tan pi/5
=>2x=pi/5+kpi
=>x=pi/10+kpi/2
d: tan(2x+pi/3)=0
=>2x+pi/3=kpi
=>2x=-pi/3+kpi
=>x=-pi/6+kpi/2
e: cot(x-pi/3)=0
=>x-pi/3=pi/2+kpi
=>x=5/6pi+kpi
giải phương trình
a) \(tanx=-1\)
b) \(tan\)(x+20 độ) = tan60 độ
c) \(tan3x=tan\left(x-\dfrac{\pi}{6}\right)\)
d) \(tan\left(5x+\dfrac{\pi}{4}\right)=0\)
e) \(cot\left(2x-\dfrac{\pi}{4}\right)=0\)
Để giải các phương trình này, chúng ta cần sử dụng các quy tắc và công thức của hàm tan và hàm cot. Hãy xem cách giải từng phương trình một:
a) Để giải phương trình tan(x) = -1, ta biết rằng giá trị của hàm tan là -1 tại các góc -π/4 và 3π/4. Vì vậy, x có thể là -π/4 + kπ hoặc 3π/4 + kπ, với k là số nguyên.
b) Để giải phương trình tan(x+20°) = tan(60°), ta có thể sử dụng quy tắc tan(A+B) = (tanA + tanB) / (1 - tanAtanB). Áp dụng công thức này, ta có: (tanx + tan20°) / (1 - tanxtan20°) = tan60°. Giải phương trình này, ta sẽ tìm được giá trị của x.
c) Để giải phương trình tan(3x) = tan(x-π/6), ta có thể sử dụng quy tắc tan(A-B) = (tanA - tanB) / (1 + tanAtanB). Áp dụng công thức này, ta có: (tan3x - tan(π/6)) / (1 + tan3xtan(π/6)) = 0. Giải phương trình này, ta sẽ tìm được giá trị của x.
d) Để giải phương trình tan(5x+π/4) = 0, ta biết rằng giá trị của hàm tan là 0 tại các góc π/2 + kπ, với k là số nguyên. Vì vậy, 5x+π/4 = π/2 + kπ. Giải phương trình này, ta sẽ tìm được giá trị của x.
e) Để giải phương trình cot(2x-π/4) = 0, ta biết rằng giá trị của hàm cot là 0 tại các góc π + kπ, với k là số nguyên. Vì vậy, 2x-π/4 = π + kπ. Giải phương trình này, ta sẽ tìm được giá trị của x.
a: tan x=-1
=>tan x=tan(-pi/4)
=>x=-pi/4+kpi
b: tan(x+20 độ)=tan 60 độ
=>x+20 độ=60 độ+k*180 độ
=>x=40 độ+k*180 độ
c: tan 3x=tan(x-pi/6)
=>3x=x-pi/6+kpi
=>2x=-pi/6+kpi
=>x=-pi/12+kpi/2
d: tan(5x+pi/4)=0
=>5x+pi/4=kpi
=>5x=-pi/4+kpi
=>x=-pi/20+kpi/5
e: cot(2x-pi/4)=0
=>2x-pi/4=pi/2+kpi
=>2x=3/4pi+kpi
=>x=3/8pi+kpi/2
1) Phuong trinh: \(\dfrac{tanx}{1-tan^2x}\dfrac{1}{2}cot\left(x+\dfrac{\Pi}{4}\right)\)co nghiem la:
Đề bài thiếu 1 vế của pt
Cho 0o < x < 90o, CM các biểu thức sau không phụ thuộc vào biến:
\(1.A=2\left(\sin^4x+\cos^4x+\sin^2x\cos^2x\right)^2-\left(\sin^8x+\cos^8x\right)\)
\(2.B=\left(\dfrac{1-\tan^2x}{\tan x}\right)^2-\left(1+\tan^2x\right)\left(1+\cot^2x\right)\)
\(3.C=\left(\sin^4x+\cos^4x-1\right)\left(\tan^2x+\cot^2x+2\right)\)
\(4.D=\dfrac{\tan^2x-\cos^2x}{\sin^2x}+\dfrac{\cot^2x-\sin^2x}{\cos^2x}\)
\(5.E=\dfrac{\cot^2x-\cos^2x}{\cot^2x}+\dfrac{\sin x\cdot\cos x}{\cot x}\)
câu 1 : ta có : \(A=\left(sin^4x+cos^4x+sin^2x.cos^2x\right)^2-\left(sin^8x+cos^8x\right)\)
\(=\left(1-sin^2x.cos^2x\right)^2-\left(1-3sin^2x.cos^2x\right)\)
\(=\left(1-sin^2x.cos^2x\right)^2-\left(1-sin^2x.cos^2x\right)+2sin^2xcos^2x\)
\(=-sin^2x.cos^2x\left(1-sin^2x.cos^2x\right)+2sin^2x.cos^2x\)
\(=sin^2x.cos^2x\left(1+sin^2x.cos^2x\right)\)
tới đây mk xin sử dụng kiến thức lớp 10 một chút
\(=\dfrac{sin^22x}{4}\left(1+\dfrac{sin^22x}{4}\right)=\dfrac{sin^22x}{4}+\dfrac{sin^42x}{16}\)
vẩn phụ thuộc vào x \(\Rightarrow\) đề sai .
câu 1 : câu này bn có thể tìm trong trang của mk , mk nhớ đã làm nó rồi nhưng tìm hoài không đc . nếu đc bn có thể chờ mk đi hok về mk sẽ kiếm cho bn hoắc có thể là lm lại cho bn nha :)
câu 2 : https://hoc24.vn/hoi-dap/question/657072.html
câu 3 : https://hoc24.vn/hoi-dap/question/657069.html
câu 4 : https://hoc24.vn/hoi-dap/question/656635.html
câu 5 : https://hoc24.vn/hoi-dap/question/657071.html