4.32x-2.9x-54=0
\(\dfrac{1}{2}\).2x+4,2x-288=0
Gọi x 1 ; x 2 là 2 nghiệm của phương trình 3 4 x + 8 − 4 .3 2 x + 5 + 27 = 0 . Tính S = x 1 . x 2
A. S = − 5 2
B. S = 3 2
C. S = 1
D. S = 3
3^2x-1+2.9x-1=405
3/5.(3x^3-8/9)-1/2.(3/2-1)=-1/4
\(\left(\dfrac{1}{3}\right)^{x-1}+5.\left(\dfrac{1}{3}\right)^{x+1}=\dfrac{14}{9^3}\)
tìm x ( giúp với mình cần gấp )
Bài 1 giải phương trình
1, x2-2x-15
2,x2-2=\(\left(x+1\right).\left(x-2\right)\)
4,2x2-(2x+1)(x-2)=0
5,x(x-2)-(x-1)2=0
6, x(x+2)=x2+2x
Giải các phương trình:
a) \(25x^2-16=0;\) b) \(2x^2+3=0;\)
c) \(4,2x^2+5,46x=0;\) d) \(4x^2-2\sqrt{3}x=1-\sqrt{3}.\)
a) 25x2 – 16 = 0 ⇔ 25x2 = 16 ⇔ x2 =
⇔ x = ± = ±
b) 2x2 + 3 = 0: Phương trình vô nghiệm vì vế trái là 2x2 + 3 ≥ 3 còn vế phải bằng 0.
c) 4,2x2 + 5,46x = 0 ⇔ 2x(2,1x + 2,73) = 0
=> x = 0
Hoặc 2,1x + 2,73 = 0 => x = -1,3
d) 4x2 - 2√3x = 1 - √3 ⇔ 4x2 - 2√3x – 1 + √3 = 0
Có a = 4, b = -2√3, b’ = -√3, c = -1 + √3
∆’ = (-√3)2 – 4 . (-1 + √3) = 3 + 4 - 4√3 = (2 - √3)2, √∆’ = 2 - √3
x1 = = , x2 = =
Giúp em với ạ :(((
BT:giải các phương trình sau:
1,(2x-5).(x-3)+(2x-5)^2=0
2,3x-5/4+2x-3/6=x/3-1
3,96/x^2-16-2x-1/x+4=1-3x/4-x-5
4,2x-9/2x-5+3x/3x-2=2
\(\left(2x-5\right)\left(x-3\right)+\left(2x-5\right)^2=0\)
\(\Rightarrow\left(2x-5\right)\left(x-3+2x-5\right)=0\)
\(\Rightarrow\left(2x-5\right)\left(3x-8\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-5=0\\3x-8=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=\frac{8}{3}\end{cases}}\)
\(\frac{3x-5}{4}+\frac{2x-3}{6}=\frac{x}{3}-1\)
\(\Leftrightarrow\frac{18x-30+8x-12}{24}=\frac{x-3}{3}\)
\(\Leftrightarrow\frac{26x-42}{24}=\frac{x-3}{3}\)
\(\Leftrightarrow78x-126=24x-72\)
Chuyển vế các kiểu
\(\frac{2x-9}{2x-5}+\frac{3x}{3x-2}=2\)
\(\Leftrightarrow\left(2x-6\right)\left(3x-2\right)+3x\left(2x-5\right)=2\left(2x-5\right)\left(3x-2\right)\)
\(\Leftrightarrow6x^2-4x-18x+12+6x^2-15x=2\left(6x^2-4x-15x+10\right)\)
\(\Leftrightarrow12x^2-27x+12=12x^2-38x+20\)
Đến đây EZ rồi
Giair các phương trình sau
\(a,\dfrac{3x^2+7x-10}{x}=0\) \(b,\dfrac{4x-17}{2x^2+1}=0\) \(c,\dfrac{\left(x^2+2x\right)-\left(3x-6\right)}{x+2}=0\)
\(d,\dfrac{x^2-x-6}{x-3}=0\) \(e,\dfrac{2x-5}{x+5}=3\) \(f,\)\(\dfrac{5}{3x+2}=2x-1\)
\(g,\dfrac{x^2-6}{x}=x+\dfrac{3}{2}\) \(h,\dfrac{4}{x-2}-x+2=0\)
Giups mình với , mik đang cần gấp
a) ĐKXĐ: \(x\ne0\)
Ta có: \(\dfrac{3x^2+7x-10}{x}=0\)
Suy ra: \(3x^2+7x-10=0\)
\(\Leftrightarrow3x^2-3x+10x-10=0\)
\(\Leftrightarrow3x\left(x-1\right)+10\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(3x+10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\3x+10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\3x=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{10}{3}\end{matrix}\right.\)
Vậy: \(S=\left\{1;-\dfrac{10}{3}\right\}\)
a/ \(\dfrac{3x^2+7x-10}{x}=0\)
\(< =>3x^2+7x-10=0\)
\(< =>3x^2+10x-3x-10=0\)
\(< =>\left(3x^2+10x\right)-\left(3x+10\right)=0\)
\(< =>x\left(3x+10\right)-\left(3x+10\right)=0\)
\(< =>\left(3x+10\right)\left(x-1\right)=0\)
\(=>\left\{{}\begin{matrix}3x+10=0=>x=-\dfrac{10}{3}\\x-1=0=>x=1\end{matrix}\right.\)
Vậy tập nghiệm của .....
1).(4-3x)(10-5x)=0 2).(7-2x)(4+8x)=0 3).(9-7x)(11-3x)=0
4).(7-14x)(x-2)=0 5).(\(\dfrac{7}{8}\)-2x)(3x+\(\dfrac{1}{3}\))=0 6).3x-2x\(^2\)
7).5x+10x\(^2\)
1.
<=> \(\left[{}\begin{matrix}4-3x=0\\10-5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{3}\\x=2\end{matrix}\right.\)
2.
<=>\(\left[{}\begin{matrix}7-2x=0\\4+8x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\)
3.
<=>\(\left[{}\begin{matrix}9-7x=0\\11-3x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9}{7}\\x=\dfrac{11}{3}\end{matrix}\right.\)
4.
<=>\(\left[{}\begin{matrix}7-14x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=2\end{matrix}\right.\)
5.
<=>\(\left[{}\begin{matrix}\dfrac{7}{8}-2x=0\\3x+\dfrac{1}{3}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{16}\\x=-\dfrac{1}{9}\end{matrix}\right.\)
6,7. ko đủ điều kiện tìm
1, Cho x; y; z ≠0 và \(\dfrac{1}{x}\) + \(\dfrac{1}{y}\)+ \(\dfrac{1}{z}\)=\(\dfrac{2}{2x+y+2z}\). Cmr: (2x+y)(y+2z)(z+x)= 0
2, Cho \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=1\). Cmr: \(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}=0\)
Gấp ạ, ai giúp mình với!!!!
2: Ta có: \(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}=\dfrac{a\left(a+b+c\right)}{b+c}+\dfrac{b\left(a+b+c\right)}{c+a}+\dfrac{c\left(a+b+c\right)}{a+b}-a-b-c=\left(a+b+c\right)\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)=a+b+c-a-b-c=0\)
1: Sửa đề: Cho \(x,y,z\ne0\) và \(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{1}{z}=\dfrac{2}{2x+y+2z}\).
CM:....
Đặt 2x = x', 2z = z'.
Ta có: \(\dfrac{2}{x'}+\dfrac{2}{y}+\dfrac{2}{z'}=\dfrac{2}{x'+y+z'}\)
\(\Leftrightarrow\dfrac{1}{x'}+\dfrac{1}{y}+\dfrac{1}{z'}=\dfrac{1}{x'+y+z'}\)
\(\Leftrightarrow\dfrac{1}{x'}-\dfrac{1}{x'+y+z'}+\dfrac{1}{y}+\dfrac{1}{z'}=0\)
\(\Leftrightarrow\dfrac{y+z'}{x'\left(x'+y+z'\right)}+\dfrac{y+z'}{yz'}=0\)
\(\Leftrightarrow\dfrac{\left(y+z'\right)\left(yz'+x'^2+x'y+x'z'\right)}{x'yz'\left(x'+y+z'\right)}=0\)
\(\Leftrightarrow\dfrac{\left(x'+y\right)\left(y+z'\right)\left(z'+x'\right)}{x'yz'\left(x'+y+z'\right)}=0\Leftrightarrow\left(2x+y\right)\left(y+2z\right)\left(2z+2x\right)=0\Leftrightarrow\left(2x+y\right)\left(y+2z\right)\left(z+x\right)=0\left(đpcm\right)\)
a) \(x\left(x+4\right)-4x+1=0\)
b) \(2\left(x-3\right)+4=2x+2\)
c) \(\dfrac{x+3}{2}-\dfrac{2x+1}{4}=\dfrac{1}{4}\)
d) \(\dfrac{x^2+3x}{x+3}+3=0\)
e) \(x^2-3x\left(x-1\right)-3x-2=0\)
a: =>x^2+4x-4x+1=0
=>x^2+1=0
=>Loại
b: =>2x-6+4=2x+2
=>-2=2(loại)
c: =>2(x+3)-2x-1=1
=>6-1=1
=>5=1(loại)
d =>x+3=0
=>x=-3(loại)
e: =>x^2-3x^2+3x-3x-2=0
=>-2x^2-2=0
=>x^2+1=0
=>Loại