Những câu hỏi liên quan
H24
Xem chi tiết
HN
12 tháng 8 2016 lúc 9:39

Ta luôn có : \(\left|x+\frac{8}{5}\right|\ge0\) , \(\left|2,2-2y\right|\ge0\)

Suy ra \(\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|\ge0\)

mà \(\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|\le0\)

Do đó : \(\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|=0\)

\(\Rightarrow\begin{cases}\left|x+\frac{8}{5}\right|=0\\\left|2,2-2y\right|=0\end{cases}\) \(\Rightarrow\begin{cases}x=-\frac{8}{5}\\y=\frac{11}{10}\end{cases}\)

Bình luận (0)
IM
12 tháng 8 2016 lúc 9:39

Ta có

\(\begin{cases}\left|x+\frac{8}{5}\right|\ge0\\\left|2,3-2y\right|\ge0\end{cases}\)

=> \(\left|x+\frac{8}{5}\right|+\left|2,3-2y\right|\ge0\)

=> \(x,y\in\varnothing\)

Bình luận (0)
VT
12 tháng 8 2016 lúc 9:40

Vì : \(\left|x+\frac{8}{5}\right|\ge0;\left|2,2-2y\right|\ge0\)

\(\Rightarrow\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|\ge0\)

Mà theo đề bài : \(\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|\le0\)

\(\Rightarrow\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|=0\)

\(\Rightarrow\begin{cases}\left|x+\frac{8}{5}\right|=0\\\left|2,2-2y\right|=0\end{cases}\)

\(\Rightarrow\begin{cases}x+\frac{8}{5}=0\\2,2-2y=0\end{cases}\)

\(\Rightarrow\begin{cases}x=-\frac{8}{5}\\2y=2,2\end{cases}\)

\(\Rightarrow\begin{cases}x=\frac{-8}{5}\\y=1,1\end{cases}\)

\(\Rightarrow\begin{cases}x=\frac{-8}{5}\\y=\frac{11}{10}\end{cases}\)

Bình luận (0)
DT
Xem chi tiết
MH
8 tháng 1 2016 lúc 9:16

|x+8/5| + |2,2-2y| = 0 ( không thể < 0 )

=> x + 8/5 = 2,2 - 2y = 0

=> x = -8/5; 2y = 2,2

=> x = -8/5; y = 1,1

Bình luận (0)
TT
8 tháng 1 2016 lúc 9:17

\(y=1,1\)

x=-8/5

Bình luận (0)
ND
8 tháng 1 2016 lúc 21:21

|x+8/5| + |2,2-2y| = 0 ( không thể < 0 )

=> x + 8/5 = 2,2 - 2y = 0

=> x = -8/5; 2y = 2,2

=> x = -8/5; y = 1,1

Bình luận (0)
LG
Xem chi tiết
SG
4 tháng 7 2016 lúc 15:08

\(Do\left|x+\frac{8}{5}\right|\ge0;\left|2,2-2y\right|\ge0=>\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|\ge0\)

\(\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|\le0=>\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|=0\)

\(=>\hept{\begin{cases}\left|x+\frac{8}{5}\right|=0\\\left|2,2-2y\right|=0\end{cases}=>\hept{\begin{cases}x+\frac{8}{5}=0\\2,2-2y=0\end{cases}=>\hept{\begin{cases}x=-\frac{8}{5}\\2y=2,2\end{cases}=>\hept{\begin{cases}x=-1,6\\y=1,1\end{cases}}}}}\)

Vậy x = -1,6; y = 1,1

Ủng hộ mk nha ^_-

Bình luận (0)
H24
Xem chi tiết
SG
12 tháng 8 2016 lúc 9:23

Vì \(\left|x+\frac{8}{5}\right|\ge0;\left|2,2-2y\right|\ge0\)

=> \(\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|\ge0\)

Mà theo đề bài \(\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|\le0\)

=> \(\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|=0\)

=>\(\hept{\begin{cases}\left|x+\frac{8}{5}\right|=0\\\left|2,2-2y\right|=0\end{cases}}\)=>  \(\hept{\begin{cases}x+\frac{8}{5}=0\\2,2-2y=0\end{cases}}\)=> \(\hept{\begin{cases}x=\frac{-8}{5}\\2y=2,2\end{cases}}\)=> \(\hept{\begin{cases}x=\frac{-8}{5}\\y=1,1=\frac{11}{10}\end{cases}}\)

Bình luận (0)
MM
12 tháng 8 2016 lúc 9:16

kb vs mk nha

Bình luận (0)
TV
12 tháng 8 2016 lúc 9:23

k minh nha Yumi

Bình luận (0)
PN
Xem chi tiết
LD
30 tháng 3 2019 lúc 13:03

3.

Bình luận (1)
HP
Xem chi tiết
LF
23 tháng 8 2016 lúc 18:26

câu nào cx ghi là lớp 8 nhưng thực ra lớp 9 cx k nổi vc

Bình luận (3)
LH
23 tháng 8 2016 lúc 18:27

y như anh việt à

Bình luận (5)
PP
23 tháng 8 2016 lúc 20:25

P = 1

Bình luận (0)
BN
Xem chi tiết
BB
Xem chi tiết
NL
23 tháng 4 2019 lúc 21:47

Áp dụng BĐT \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\)

\(\Rightarrow P\ge\frac{1}{2}\left(2x+\frac{1}{x}+2y+\frac{1}{y}\right)^2=\frac{1}{2}\left[2\left(x+y\right)+\frac{1}{x}+\frac{1}{y}\right]^2\)

\(\Rightarrow P\ge\frac{1}{2}\left[2\left(x+y\right)+\frac{4}{x+y}\right]^2=18\)

\(\Rightarrow P_{min}=18\) khi \(x=y=\frac{1}{2}\)

Bình luận (0)
NC
Xem chi tiết
NL
9 tháng 2 2020 lúc 18:17

\(P\ge\frac{\left(x+y\right)^2}{2\left(2x^2+1\right)\left(2y^2+1\right)}+\frac{1}{xy}=\frac{2}{\left(2x^2+1\right)\left(2y^2+1\right)}+\frac{2}{9xy}+\frac{7}{9xy}\)

\(P\ge\frac{8}{4x^2y^2+2x^2+2y^2+4xy+5xy+1}+\frac{7}{9xy}\)

\(P\ge\frac{8}{4\left(\frac{x+y}{2}\right)^4+2\left(x+y\right)^2+\frac{5}{4}\left(x+y\right)^2+1}+\frac{28}{9\left(x+y\right)^2}=\frac{11}{9}\)

Bình luận (0)
 Khách vãng lai đã xóa