Ôn tập toán 7

H24

Tìm x , y thõa mãn :

\(\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|\le0\)

HN
12 tháng 8 2016 lúc 9:39

Ta luôn có : \(\left|x+\frac{8}{5}\right|\ge0\) , \(\left|2,2-2y\right|\ge0\)

Suy ra \(\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|\ge0\)

mà \(\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|\le0\)

Do đó : \(\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|=0\)

\(\Rightarrow\begin{cases}\left|x+\frac{8}{5}\right|=0\\\left|2,2-2y\right|=0\end{cases}\) \(\Rightarrow\begin{cases}x=-\frac{8}{5}\\y=\frac{11}{10}\end{cases}\)

Bình luận (0)
IM
12 tháng 8 2016 lúc 9:39

Ta có

\(\begin{cases}\left|x+\frac{8}{5}\right|\ge0\\\left|2,3-2y\right|\ge0\end{cases}\)

=> \(\left|x+\frac{8}{5}\right|+\left|2,3-2y\right|\ge0\)

=> \(x,y\in\varnothing\)

Bình luận (0)
VT
12 tháng 8 2016 lúc 9:40

Vì : \(\left|x+\frac{8}{5}\right|\ge0;\left|2,2-2y\right|\ge0\)

\(\Rightarrow\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|\ge0\)

Mà theo đề bài : \(\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|\le0\)

\(\Rightarrow\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|=0\)

\(\Rightarrow\begin{cases}\left|x+\frac{8}{5}\right|=0\\\left|2,2-2y\right|=0\end{cases}\)

\(\Rightarrow\begin{cases}x+\frac{8}{5}=0\\2,2-2y=0\end{cases}\)

\(\Rightarrow\begin{cases}x=-\frac{8}{5}\\2y=2,2\end{cases}\)

\(\Rightarrow\begin{cases}x=\frac{-8}{5}\\y=1,1\end{cases}\)

\(\Rightarrow\begin{cases}x=\frac{-8}{5}\\y=\frac{11}{10}\end{cases}\)

Bình luận (0)

Các câu hỏi tương tự
TM
Xem chi tiết
DA
Xem chi tiết
TK
Xem chi tiết
NH
Xem chi tiết
DT
Xem chi tiết
NN
Xem chi tiết
BT
Xem chi tiết
NH
Xem chi tiết
YO
Xem chi tiết