Những câu hỏi liên quan
TT
Xem chi tiết
LT
2 tháng 12 2017 lúc 16:30

1) 

 n³ + 3n² + 2n = n²(n + 1) + 2n(n + 1) = n(n + 1)(n + 2) 
số chia hết cho 6 là số chia hết cho 2 và 3 
mà (n + 1) chia hết cho 2 và 3 với mọi số nguyên n 
(n + 2) chia hết cho 2 và 3 với mọi số nguyên n 
=>n³ + 3n² + 2n luôn chia hết cho 6 với mọi số nguyên n

2)

Bạn làm tương tự nha! 

Bình luận (0)
TT
2 tháng 12 2017 lúc 17:11

thank

Bình luận (0)
HP
Xem chi tiết
TA
Xem chi tiết
NL
20 tháng 1 2021 lúc 19:42

\(a=\lim\sqrt{n^3}\sqrt{\dfrac{1}{n^3}+\dfrac{2}{n^2}-1}=\infty.\left(-1\right)=-\infty\)

\(b=\lim\left(\sqrt{n^2+2n+3}-n+n-\sqrt[3]{n^2+n^3}\right)\)

\(=\lim\dfrac{2n+3}{\sqrt{n^2+2n+3}+n}+\lim\dfrac{-n^2}{n^2+n\sqrt[3]{n^2+n^3}+\sqrt[3]{\left(n^2+n^3\right)^2}}\)

\(=\lim\dfrac{2+\dfrac{3}{n}}{\sqrt{1+\dfrac{2}{n}+\dfrac{3}{n^2}}+1}+\lim\dfrac{-1}{1+\sqrt[3]{\dfrac{1}{n}+1}+\sqrt[3]{\left(\dfrac{1}{n}+1\right)^2}}=\dfrac{2}{2}-\dfrac{1}{3}=\dfrac{2}{3}\)

\(c=\lim\dfrac{\left(\dfrac{2}{\sqrt{n}}+\dfrac{1}{n}\right)\left(\dfrac{1}{\sqrt{n}}+\dfrac{3}{n}\right)}{\left(1+\dfrac{1}{n}\right)\left(1+\dfrac{2}{n}\right)}=\dfrac{0.0}{1.1}=0\)

Bình luận (0)
NL
20 tháng 1 2021 lúc 19:47

\(d=\lim\dfrac{4-3\left(\dfrac{2}{4}\right)^n}{9.\left(\dfrac{3}{4}\right)^n+\left(\dfrac{2}{4}\right)^n}=\dfrac{4}{0}=+\infty\)

\(e=\lim\dfrac{7-25\left(\dfrac{5}{7}\right)^n+3.\left(\dfrac{1}{7}\right)^n}{12.\left(\dfrac{6}{7}\right)^n-\left(\dfrac{3}{7}\right)^n+3\left(\dfrac{1}{7}\right)^n}=\dfrac{7}{0}=+\infty\)

\(f=\lim\dfrac{n^4-4n^6}{n\left(\sqrt{n^4+1}+\sqrt{4n^6+1}\right)}=\lim\dfrac{\dfrac{1}{n^2}-6}{\sqrt{\dfrac{1}{n^6}+\dfrac{1}{n^{10}}}+\sqrt{\dfrac{4}{n^4}+\dfrac{1}{n^{10}}}}=\dfrac{-6}{0}=-\infty\)

Bình luận (0)
NN
Xem chi tiết
NS
5 tháng 4 2016 lúc 7:51
Mk ko biết. Mk mới học lớp 5. Đáp số: mk ko biết
Bình luận (0)
MI

bạn viết thế mình ko hiểu

Bình luận (0)
 Khách vãng lai đã xóa
NM
Xem chi tiết
H24
21 tháng 7 2017 lúc 22:11

Tìm trước khi hỏi nhé bạn!

Câu hỏi của Vy Trương Thị Mai - Toán lớp 7 - Học toán với OnlineMath

Bình luận (0)
NV
Xem chi tiết
HH
1 tháng 2 2021 lúc 17:43

a/ \(=\lim\limits\dfrac{\sqrt{\dfrac{n}{n}+\dfrac{1}{n}}}{\dfrac{1}{\sqrt{n}}+\sqrt{\dfrac{n}{n}}}=1\)

b/ \(1+2+...+n=\dfrac{n\left(n+1\right)}{2}\)

\(\Rightarrow\lim\limits\dfrac{n\left(n+1\right)}{2n^2+4}=\lim\limits\dfrac{\dfrac{n^2}{n^2}+\dfrac{n}{n^2}}{\dfrac{2n^2}{n^2}+\dfrac{4}{n^2}}=\dfrac{1}{2}\)

c/ \(=\lim\limits\dfrac{n^2+n+1-n^2}{\sqrt{n^2+n+1}+n}=\lim\limits\dfrac{n+1}{\sqrt{n^2+n+1}+n}=\lim\limits\dfrac{\dfrac{n}{n}+\dfrac{1}{n}}{\sqrt{\dfrac{n^2}{n^2}+\dfrac{n}{n^2}+\dfrac{1}{n^2}}+\dfrac{n}{n}}=\dfrac{1}{1+1}=\dfrac{1}{2}\)

d/ \(=\lim\limits\left[\sqrt{n}\left(\sqrt{3-\dfrac{1}{\sqrt{n}}}-\sqrt{2-\dfrac{1}{\sqrt{n}}}\right)\right]=\lim\limits\left[\sqrt{n}\left(\sqrt{3}-\sqrt{2}\right)\right]=+\infty\)

e/ \(=\lim\limits\dfrac{n^3+2n^2-n-n^3}{\left(\sqrt[3]{n^3+2n^2}\right)^2+n.\sqrt[3]{n^3+2n^2}+n^2}=\lim\limits\dfrac{2n^2-n}{\left(n^3+2n^2\right)^{\dfrac{2}{3}}+n.\left(n^3+2n^2\right)^{\dfrac{1}{3}}+n^2}\)

\(=\dfrac{2}{1+1+1}=\dfrac{2}{3}\)

g/ \(=\lim\limits\dfrac{2^n+9.3^n}{4.3^n+8.2^n}=\lim\limits\dfrac{\left(\dfrac{2}{3}\right)^n+9.\left(\dfrac{3}{3}\right)^n}{4.\left(\dfrac{3}{3}\right)^n+8.\left(\dfrac{2}{3}\right)^n}=\dfrac{9}{4}\)

Bình luận (2)
MM
Xem chi tiết
ND
18 tháng 10 2016 lúc 10:08

\(3^{n+2}-2^{n+2}+3^{n-2}=3^{n+2}-2^{n+2}+3^{n-2}\)

\(3^{n+2}-2^{n+2}+3^{n-2}=3^n.3^2-2^n.2^2+3^n:3^2=3^n.9-2^n.4+3^n:9\)

Bình luận (1)
NT
18 tháng 10 2016 lúc 9:11

dua bai nay len lop 12 , nguoi ta giải cho

Bình luận (0)
DN
Xem chi tiết
MS
5 tháng 7 2018 lúc 10:08

\(3^{n+2}-2^{n+2}+3^n-2^n\)

\(=\left(3^n.3^2+3^n\right)-\left(2^n.2^2+2^n\right)\)

\(=\left(3^n.10\right)-\left(2^n.5\right)=\left(3^n.10\right)-\left(2^{n-1}.10\right)\)

\(=\left(3^n-2^{n-1}\right).10⋮10\)

Tương tự nhé

Bình luận (0)
NS
Xem chi tiết
NT
24 tháng 11 2023 lúc 22:34

a: \(\lim\limits_{n\rightarrow+\infty}\dfrac{n^5+n^2-n+2}{\left(2n^3-1\right)\left(n^2+n+1\right)}\)

\(=\lim\limits_{n\rightarrow+\infty}\dfrac{1+\dfrac{1}{n^3}-\dfrac{1}{n^4}+\dfrac{2}{n^5}}{\left(\dfrac{2n^3}{n^3}-\dfrac{1}{n^3}\right)\left(\dfrac{n^2+n+1}{n^2}\right)}\)

\(=\lim\limits_{n\rightarrow+\infty}\dfrac{1+\dfrac{1}{n^3}-\dfrac{1}{n^4}+\dfrac{2}{n^5}}{\left(2-\dfrac{1}{n^3}\right)\left(1+\dfrac{1}{n}+\dfrac{1}{n^2}\right)}\)

\(=\dfrac{1}{2\cdot1}=\dfrac{1}{2}\)

b: \(\lim\limits_{n\rightarrow+\infty}\dfrac{\sqrt{n^2-n+2}}{n+2}\)

\(=\lim\limits_{n\rightarrow+\infty}\dfrac{n\sqrt{1-\dfrac{1}{n}+\dfrac{2}{n^2}}}{n\left(1+\dfrac{2}{n}\right)}\)

\(=\lim\limits_{n\rightarrow+\infty}\dfrac{\sqrt{1-\dfrac{1}{n}+\dfrac{2}{n^2}}}{1+\dfrac{2}{n}}=\dfrac{\sqrt{1-0+0}}{1+0}=\dfrac{1}{1}=1\)

c: \(\lim\limits_{n\rightarrow+\infty}\dfrac{n-\sqrt[3]{n^2-n^3}}{n^2+n+1}\)

\(=\lim\limits_{n\rightarrow+\infty}\dfrac{\dfrac{n}{n^2}-\dfrac{\sqrt[3]{n^2-n^3}}{n^2}}{1+\dfrac{1}{n}+\dfrac{1}{n^2}}\)

\(=\lim\limits_{n\rightarrow+\infty}\dfrac{\dfrac{1}{n}-\sqrt[3]{\dfrac{1}{n^4}-\dfrac{1}{n^3}}}{1+\dfrac{1}{n}+\dfrac{1}{n^2}}=\dfrac{0}{1}=0\)

d: \(\lim\limits_{n\rightarrow+\infty}\left(n-\sqrt{n^2+n+1}\right)\)

\(=\lim\limits_{n\rightarrow+\infty}\dfrac{n^2-n^2-n-1}{n+\sqrt{n^2+n+1}}\)

\(=\lim\limits_{n\rightarrow+\infty}\dfrac{-n-1}{n+\sqrt{n^2+n+1}}\)

\(=\lim\limits_{n\rightarrow+\infty}\dfrac{-1-\dfrac{1}{n}}{1+\sqrt{1+\dfrac{1}{n}+\dfrac{1}{n^2}}}=-\dfrac{1}{1+1}=-\dfrac{1}{2}\)

Bình luận (0)
PL
Xem chi tiết
NT
27 tháng 1 2022 lúc 13:06

a, Xem lại đề.

b, <=> \(3^{n+1}=3^5\) <=> \(n+1=5\) <=> \(n=4\)

c, <=> \(7^{n-4}=7^2\) <=> \(n-4=2\) <=> \(n=6\)

d, <=> \(n=\pm3\)

e, <=> \(2^{n+4}=2^7\) <=> \(n+4=7\) <=> \(n=3\)

g, <=> \(2^n=\frac{1}{25}\) <=> .... (xem lai đề)

h, <=>  \(n=6\)

k, <=> \(n^2=81\) <=> \(n=\pm9\)

l, <=> \(n^2\left(n-1\right)=0\) <=> \(\orbr{\begin{cases}n=0\\n=1\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa