Những câu hỏi liên quan
GT
Xem chi tiết
PQ
10 tháng 12 2020 lúc 20:45

Ta có: \(tan\alpha=2\Leftrightarrow\dfrac{sin\alpha}{cos\alpha}=2\Leftrightarrow sin\alpha=2cos\alpha\)

A = \(\dfrac{16cos^2\alpha+6cos^2\alpha}{20cos^2\alpha-2cos^2\alpha}=\dfrac{22cos^2\alpha}{18cos^2\alpha}=\dfrac{11}{9}\)

Bình luận (0)
TN
Xem chi tiết
NT
13 tháng 1 2023 lúc 10:10

tan a=2

=>sin a=2*cosa

\(P=\dfrac{10cosa-3cosa}{cosa+2\cdot2cosa}=\dfrac{7}{5}\)

Bình luận (0)
SD
Xem chi tiết
NL
8 tháng 2 2022 lúc 16:11

\(A=\dfrac{\dfrac{3sina}{sina}-\dfrac{cosa}{sina}}{\dfrac{2sina}{sina}+\dfrac{cosa}{sina}}=\dfrac{3-cota}{2+cota}=\dfrac{3-3}{2+3}=0\)

\(B=\dfrac{\dfrac{sin^2a}{sin^2a}-\dfrac{3sina.cosa}{sin^2a}+\dfrac{2}{sin^2a}}{\dfrac{2sin^2a}{sin^2a}+\dfrac{sina.cosa}{sin^2a}+\dfrac{cos^2a}{sin^2a}}=\dfrac{1-3cota+2\left(1+cot^2a\right)}{2+cota+cot^2a}=\dfrac{1-3.3+2\left(1+3^2\right)}{2+3+3^2}=...\)

Bình luận (2)
AM
8 tháng 2 2022 lúc 16:14

a. \(A=\dfrac{3sin\alpha-cos\alpha}{2sin\alpha+cos\alpha}=\dfrac{3\dfrac{sin\alpha}{cos\alpha}-1}{2\dfrac{sin\alpha}{cos\alpha}+1}=\dfrac{3.\dfrac{1}{3}-1}{2.\dfrac{1}{3}+1}=0\)

b.\(B=\dfrac{sin^2\alpha-3sin\alpha.cos\alpha+2}{2sin^2\alpha+sin\alpha.cos\alpha+cos^2\alpha}\)\(=\dfrac{1-\dfrac{3cos\alpha}{sin\alpha}+\dfrac{2}{sin^2\alpha}}{2+\dfrac{cos\alpha}{sin\alpha}+\dfrac{cos^2\alpha}{sin^2\alpha}}=\dfrac{1-3.3+\dfrac{2}{sin^2\alpha}}{2+3+3^2}\)

Mà \(\dfrac{cos\alpha}{sin\alpha}=3,cos^2\alpha+sin^2\alpha=1\Rightarrow sin^2\alpha=\dfrac{1}{10}\)

\(B=\dfrac{1-3.3+\dfrac{2}{\dfrac{1}{10}}}{2+3+3^2}=\dfrac{6}{7}\)

Bình luận (0)
SD
8 tháng 2 2022 lúc 16:26

Dạ em cảm ơn thầy và mọi người ạ! 

Bình luận (0)
HA
Xem chi tiết
NT
14 tháng 10 2022 lúc 15:03

tan a=2 nên sina/cosa=2

=>sina=2cosa

\(A=\dfrac{sinacosa\left(sin^2a+cos^2a\right)}{\left(sin^2a+cos^2a\right)^2-2\cdot sin^2a\cdot cos^2a}=\dfrac{sina\cdot cosa}{1-2\cdot\left(sina\cdot cosa\right)^2}\)

\(=\dfrac{2cosa\cdot cosa}{1-2\cdot\left(2cosa\cdot cosa\right)^2}=\dfrac{2cos^2a}{1-8cos^2a}\)

Bình luận (0)
H24
Xem chi tiết
NL
24 tháng 7 2020 lúc 8:40

hỏi tí chớ \(TanB=2\) hay \(Tan\alpha=2\) vậy lolang.

Bình luận (0)
NH
Xem chi tiết
AH
26 tháng 7 2021 lúc 14:47

Lời giải:
a.

$\tan a+\cot a=2\Leftrightarrow \tan a+\frac{1}{\tan a}=2$

$\Leftrightarrow \frac{\tan ^2a+1}{\tan a}=2$

$\Leftrightarrow \tan ^2a-2\tan a+1=0$

$\Leftrightarrow (\tan a-1)^2=0\Rightarrow \tan a=1$

$\cot a=\frac{1}{\tan a}=1$

$1=\tan a=\frac{\cos a}{\sin a}\Rightarrow \cos a=\sin a$

Mà $\cos ^2a+\sin ^2a=1$

$\Rightarrow \cos a=\sin a=\pm \frac{1}{\sqrt{2}}$

b.

Vì $\sin a=\cos a=\pm \frac{1}{\sqrt{2}}$

$\Rightarrow \sin a\cos a=\frac{1}{2}$

$E=\frac{\sin a.\cos a}{\tan ^2a+\cot ^2a}=\frac{\frac{1}{2}}{1+1}=\frac{1}{4}$

Bình luận (0)
NM
Xem chi tiết
AH
19 tháng 8 2023 lúc 18:16

Lời giải:
\(M=\frac{\frac{\sin a}{\cos a}+1}{\frac{\sin a}{\cos a}-1}=\frac{\tan a+1}{\tan a-1}=\frac{\frac{3}{5}+1}{\frac{3}{5}-1}=-4\)

\(N = \frac{\frac{\sin a\cos a}{\cos ^2a}}{\frac{\sin ^2a-\cos ^2a}{\cos ^2a}}=\frac{\frac{\sin a}{\cos a}}{(\frac{\sin a}{\cos a})^2-1}=\frac{\tan a}{\tan ^2a-1}=\frac{\frac{3}{5}}{\frac{3^2}{5^2}-1}=\frac{-15}{16}\)

Bình luận (0)
NH
Xem chi tiết
NL
8 tháng 6 2020 lúc 0:17

\(a=\left(\frac{sina+\frac{sina}{cosa}}{cosa+1}\right)^2+1=\left(\frac{sina\left(cosa+1\right)}{cosa\left(cosa+1\right)}\right)^2+1\)

\(=tan^2a+1=\frac{1}{cos^2a}\)

\(b=\frac{sina}{cosa}\left(\frac{1+cos^2a-sin^2a}{sina}\right)=\frac{sina}{cosa}\left(\frac{2cos^2a}{sina}\right)=2cosa\)

\(c=1-\frac{cos^2a}{cot^2a}+\frac{sina.cosa}{\frac{cosa}{sina}}=1-cos^2a.\frac{sin^2a}{cos^2a}+\frac{sin^2a.cosa}{cosa}\)

\(=1-sin^2a+sin^2a=1\)

Bình luận (0)
H24
Xem chi tiết
NT
25 tháng 6 2023 lúc 22:28

a: \(VT=\dfrac{\left(sina+cosa\right)^3-3\cdot sina\cdot cosa\left(sina+cosa\right)}{sina+cosa}\)

=(sina+cosa)^2-3*sina*cosa

=sin^2a+cos^2a-sina*cosa

=1-sina*cosa=VP

c: VT=(sin^2a+cos^2a)^2-2*sin^2a*cos^2a-(sin^2a+cos^2a)^3+3*sin^2a*cos^2a*(sin^2a+cos^2a)

=1-2sin^2a*cos^2a-1+3*sin^2a*cos^2a

=sin^2a*cos^2a=VP

Bình luận (0)