\(\sqrt{2\sqrt{3}+3\sqrt{2}}\cdot\sqrt{2\sqrt{3}-3\sqrt{2}}\)
TÍNH :
\(A=\sqrt{3+\sqrt{5+2\sqrt{3}}}\cdot\sqrt{3-\sqrt{5+2\sqrt{3}}}\)
\(B=\sqrt{4+\sqrt{8}}\cdot\sqrt{2+\sqrt{2+\sqrt{2}}}\cdot\sqrt{2-\sqrt{2+\sqrt{2}}}\)
\(C=\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{3}}}\cdot\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}\cdot\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}\)
\(D=\left[4+\sqrt{15}\right]\left[\sqrt{10}-\sqrt{6}\right]\cdot\sqrt{4-\sqrt{15}}\)
\(E=\left[3-\sqrt{5}\right]\cdot\sqrt{3+\sqrt{5}}\text{ }+\left[3+\sqrt{5}\right]\cdot\sqrt{3-\sqrt{5}}\)
\(A=\sqrt{3+\sqrt{5+2\sqrt{3}}.\sqrt{3-\sqrt{5+2\sqrt{3}}}}=\sqrt{\left(3^2\right)-\left(\sqrt{5+2\sqrt{3}}\right)^2}\)
\(=\sqrt{4-2\sqrt{3}}=\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}-1\)
\(B=\sqrt{4+\sqrt{8}}.\sqrt{2+\sqrt{2+\sqrt{2}}}.\sqrt{2-\sqrt{2+\sqrt{2}}}\)
\(=\sqrt{4+2\sqrt{2}}.\sqrt{2^2-2-\sqrt{2}}=\sqrt{2}.\sqrt{2+\sqrt{2}}.\sqrt{2-\sqrt{2}}\)
\(=\sqrt{2}.\sqrt{4-2}=\sqrt{2}.\sqrt{2}=2\)
\(C=\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}.\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}\)
\(=\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2^2-\left(2+\sqrt{2+\sqrt{3}}\right)}\)
\(=\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2-\sqrt{2+\sqrt{3}}}=\sqrt{2+\sqrt{3}}.\sqrt{2^2-\left(2+\sqrt{3}\right)}\)
\(=\sqrt{2+\sqrt{3}}.\sqrt{2-\sqrt{3}}=\sqrt{4-3}=1\)
\(D=\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
\(=\sqrt{4+\sqrt{15}}.\sqrt{2}.\left(\sqrt{5}-\sqrt{3}\right).\sqrt{4+\sqrt{15}}.\sqrt{4-\sqrt{15}}\)
\(=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}.\left(\sqrt{5}-\sqrt{3}\right).\sqrt{4^2-15}\)
\(=\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)=5-3=2\)
\(E=\left(3-\sqrt{5}\right)\sqrt{3+\sqrt{5}}+\left(3+\sqrt{5}\right).\sqrt{3-\sqrt{5}}\)
\(=\sqrt{3+\sqrt{5}}.\sqrt{3-\sqrt{5}}.\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}.\sqrt{3-\sqrt{5}}.\sqrt{3+\sqrt{5}}\)
\(=2\sqrt{3-\sqrt{5}}+2\sqrt{3+\sqrt{5}}=\sqrt{2}\left(\sqrt{6-2\sqrt{5}}+\sqrt{6+2\sqrt{5}}\right)\)
\(=\sqrt{2}.\left(\sqrt{5}-1+\sqrt{5}+1\right)=2\sqrt{10}\)
\(\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{3}}}\cdot\sqrt[]{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}\cdot\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}\)
\(=\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{4-\left(2+\sqrt{2+\sqrt{3}}\right)}\)
\(=\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2-\sqrt{2+\sqrt{3}}}\)
\(=\sqrt{2+\sqrt{3}}.\sqrt{4-\left(2+\sqrt{3}\right)}\)
\(=\sqrt{2+\sqrt{3}}.\sqrt{2-\sqrt{3}}\)
\(=\sqrt{4-3}=1\)
ai làm giúp với chịu rồi
\(\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{3}}}\cdot\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}\cdot\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}\)
\(\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}.\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}\)
\(=\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{4-\left(\sqrt{2+\sqrt{2+\sqrt{3}}}\right)^2}\)
\(=\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{4-2-\sqrt{2+\sqrt{3}}}\)
\(=\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2-\sqrt{2+\sqrt{3}}}\)
\(=\sqrt{2+\sqrt{3}}.\sqrt{4-\left(\sqrt{2+\sqrt{3}}\right)^2}\)
\(=\sqrt{2+\sqrt{3}}.\sqrt{4-2-\sqrt{3}}\)
\(=\sqrt{2+\sqrt{3}}.\sqrt{2-\sqrt{3}}=\sqrt{2^2-\left(\sqrt{3}\right)^2}=\sqrt{4-3}=1\)
\(\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{3}}}\cdot\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}\cdot\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}=1\)chứng minh
Tính
A=\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\cdot\sqrt{4-\sqrt{15}}\)
B=\(\left(3-\sqrt{5}\right)\cdot\sqrt{3+\sqrt{5}}+\left(3+\sqrt{5}\right)\cdot\sqrt{3-\sqrt{5}}\)
C=\(\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{3}}}\cdot\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}\cdot\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{ }}3}}\)
D=\(\sqrt{4+\sqrt{15}}+\sqrt{4-\sqrt{15}}-2\sqrt{3-\sqrt{5}}\)
E=\(\frac{\sqrt{15-10\sqrt{2}}+\sqrt{13+4\sqrt{5}}-\sqrt{11+2\sqrt{10}}}{2\sqrt{3+2\sqrt{2}}+\sqrt{9-4\sqrt{2}}+\sqrt{12+8\sqrt{2}}}\)
a: \(A=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{8-2\sqrt{15}}\)
\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)
\(=32-8\sqrt{15}+8\sqrt{15}-30=2\)
b: \(\sqrt{2}\cdot B=\left(3-\sqrt{5}\right)\left(\sqrt{5}+1\right)+\left(3+\sqrt{5}\right)\left(\sqrt{5}-1\right)\)
\(\Leftrightarrow B\sqrt{2}=3\sqrt{5}+3-5-\sqrt{5}+3\sqrt{5}-3+5-\sqrt{5}\)
\(\Leftrightarrow B\sqrt{2}=4\sqrt{5}\)
hay \(B=2\sqrt{10}\)
d: \(D\sqrt{2}=\sqrt{5}+\sqrt{3}+\sqrt{5}-\sqrt{3}-2\cdot\left(\sqrt{5}-1\right)\)
\(=2\sqrt{5}-2\sqrt{5}+2=2\)
hay \(D=\sqrt{2}\)
Tính:
a)\(\sqrt{3\sqrt{2}-2\sqrt{3}}\cdot\sqrt{3\sqrt{2}+2\sqrt{3}}\)
b) \(\sqrt{2+2\sqrt{2-\sqrt{2}}}\cdot\sqrt{2-2\sqrt{2-\sqrt{2}}}\)
c)\(\left(\sqrt{2}-\sqrt{7}\right)\sqrt{9+2\sqrt{14}}\)
a)\(\sqrt{3\sqrt{2}-2\sqrt{3}}.\sqrt{3\sqrt{2}+2\sqrt{3}}\)
= \(\sqrt{18-12}\)
= \(\sqrt{6}\)
b) \(\sqrt{2+2\sqrt{2-\sqrt{2}}}.\sqrt{2-2\sqrt{2-\sqrt{2}}}\)
= \(\sqrt{4-4\left(\sqrt{2-\sqrt{2}}\right)^2}\)
= \(\sqrt{4-4.\left(2-4\sqrt{2}+2\right)}\)
= \(\sqrt{4-8+16\sqrt{2}-8}\)
= \(\sqrt{-12+16\sqrt{2}}\)
c)
\(\left(\sqrt{2}-\sqrt{7}\right).\sqrt{9+2\sqrt{14}}\)
= \(\left(\sqrt{2}-\sqrt{7}\right).\left(2+2\sqrt{7}.\sqrt{2}+7\right)\)
= \(\left(\sqrt{2}-\sqrt{7}\right).\left(\sqrt{2}+\sqrt{7}\right)^2\)
= \(\left(4-7\right).\left(\sqrt{2}+\sqrt{7}\right)\)
= \(-3.\left(\sqrt{2}+\sqrt{7}\right)\)
BT: Tính
a, \(\left(4+\sqrt{15}\right)\cdot\left(\sqrt{10}-\sqrt{6}\right).\sqrt{4-\sqrt{15}}\)
b,\(\left(3-\sqrt{5}\right)\cdot\sqrt{3+\sqrt{5}}+\left(3+\sqrt{5}\right)\cdot\sqrt{3-\sqrt{5}}\)
c,\(\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{3}}}\cdot\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}\)
a: \(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{8-2\sqrt{15}}\)
\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)
\(=32-8\sqrt{15}+8\sqrt{15}-30=2\)
b: \(=\dfrac{\left(3-\sqrt{5}\right)\left(\sqrt{5}+1\right)+\left(3+\sqrt{5}\right)\left(\sqrt{5}-1\right)}{\sqrt{2}}\)
\(=\dfrac{3\sqrt{5}+3-5-\sqrt{5}+3\sqrt{5}-3+5-\sqrt{5}}{\sqrt{2}}\)
\(=\dfrac{4\sqrt{5}}{\sqrt{2}}=2\sqrt{10}\)
\(\dfrac{\sqrt{8-4\sqrt{3}}}{\sqrt{2}}=\dfrac{\sqrt{4\cdot2-4\sqrt{3}}}{\sqrt{2}}=\dfrac{\sqrt{4}\cdot\sqrt{2-\sqrt{3}}}{\sqrt{2}}=\sqrt{2}\cdot\sqrt{2-\sqrt{3}}\)
Thực hiện phép tính:\(\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{3}}}\cdot\sqrt{2-\sqrt{2+\sqrt{3}}}\)
\(\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{3}}}\cdot\sqrt{2-\sqrt{2+\sqrt{3}}}\)
\(=\sqrt{2+\sqrt{3}}\cdot\sqrt{2^2-\left(\sqrt{2+\sqrt{3}}\right)^2}\)
\(=\sqrt{2+\sqrt{3}}\cdot\sqrt{4-2-\sqrt{3}}\)
\(=\sqrt{2+\sqrt{3}}\cdot\sqrt{2-\sqrt{3}}\)
\(=\sqrt{2^2-\sqrt{3}^2}=\sqrt{4-3}=1\)
\(y=\frac{1}{2+\sqrt{2}}+\frac{1}{3\cdot\sqrt{2}+2\cdot\sqrt{3}}+\frac{1}{4\cdot\sqrt{3}+3\cdot\sqrt{4}}+...+\frac{1}{100\cdot\sqrt{99}+99\cdot\sqrt{100}}\)tính y
\(y=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{99}}-\frac{1}{\sqrt{100}}\)
\(y=1-\frac{1}{10}=\frac{9}{10}\)