\(=\sqrt{\left(2\sqrt{3}+3\sqrt{2}\right)\left(2\sqrt{3}-3\sqrt{2}\right)}\)
\(=\sqrt{\left(2\sqrt{3}\right)^2-\left(3\sqrt{2}\right)^2}\)
\(=\sqrt{12-18}\)
\(=\sqrt{-6}\) (vô lí)
\(=\sqrt{\left(2\sqrt{3}+3\sqrt{2}\right)\left(2\sqrt{3}-3\sqrt{2}\right)}\)
\(=\sqrt{\left(2\sqrt{3}\right)^2-\left(3\sqrt{2}\right)^2}\)
\(=\sqrt{12-18}\)
\(=\sqrt{-6}\) (vô lí)
Tìm x để P= \(\frac{3}{\sqrt{x}+1}\) có giá trị nguyên
1: rút gọn rồi tính
\(\left(-\dfrac{72}{40}-\dfrac{144}{60}-2\dfrac{1}{3}\right)\) : \(\left(\dfrac{45}{100}-\dfrac{25}{60}+-\dfrac{75}{25}\right)\)
2: tìm x: \(3\cdot\left(4-x\right)+\left(x+2\right)\cdot\left(1+2x\right)=7\cdot\left(1+x\right)-2x\cdot\left(2-x\right)\)
3: tìm x: \(\dfrac{2\cdot\left(1+x\right)}{3}-\dfrac{5\cdot\left(2-x\right)}{6}=1\dfrac{1}{3}-\dfrac{3\cdot\left(2x+3\right)}{4}-1\dfrac{1}{2}\cdot\left(x+1\right)\)
4: cho a= \(3+3^{2^3}+3^3+3^4+...+3^{360}\)
Tính nhanh giá trị biểu thức sau:
a) \(-\frac{9}{10}\cdot\frac{5}{14}+\frac{1}{10}\cdot\left(-\frac{9}{2}\right)+\frac{1}{7}\cdot\left(-\frac{9}{10}\right)\)
b)\(\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{6}+\frac{1}{11}\right)\cdot132\)
c)\(-\frac{2}{3}\cdot\left(\frac{8}{9}\cdot\frac{8}{13}-\frac{8}{27}\cdot\frac{3}{13}+\frac{4}{3}\cdot\frac{22}{39}\right)\)
1:rút gọn
\(\dfrac{11\cdot3^{22}\cdot3^7-9^{15}}{\left(2\cdot3^{14}\right)^2}\)
2: tìm x
\(\dfrac{3\cdot\left(x-2\right)}{4}-\dfrac{2\cdot\left(1+2x\right)}{3}=1\dfrac{1}{4}-5\cdot\dfrac{\left(1+3x\right)}{6}-\dfrac{x-2}{12}\)
Tính giá trị biểu thức:
A=1-2+22-23+24-25+...+22008
B:\(\left(1+\dfrac{8}{10}\right)\cdot\left(1+\dfrac{8}{22}\right)\cdot\left(1+\dfrac{8}{36}\right)\cdot...\cdot\left(1+\dfrac{8}{8532}\right)\)
BT: Tìm x, biết:
a) \(2\dfrac{2}{3}x+3\dfrac{3}{4}x=\dfrac{385}{24}\)
b) \(-2\dfrac{2}{3}:x=1\dfrac{7}{9}:0.8\)
c) \(140\%+\dfrac{5}{3}x+2x=2280\)
d) \(-3\dfrac{1}{3}\cdot\left|x\right|=1\dfrac{1}{2}-2\dfrac{2}{3}\)
Tính
\(A=\left(\dfrac{1}{2}-1\right)\cdot\left(\dfrac{1}{3}-1\right)\cdot\left(\dfrac{1}{4}-1\right)\cdot...\cdot\left(\dfrac{1}{100}-1\right)\)
Tính nhanh:
A= \(\left(1+\dfrac{1}{1\cdot3}\right)\cdot\left(1+\dfrac{1}{2\cdot4}\right)\cdot\left(1+\dfrac{1}{3\cdot5}\right)\cdot...\cdot\left(1+\dfrac{1}{99\cdot100}\right)\)
Cho B=\(\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot...\cdot\left(1-\frac{1}{20}\right)\)
So sánh B với \(\frac{1}{21}\)