chứng minh
(x - 4xy/x+y +y):(x/x+y - y/y-x - 2xy/x^2-y^2) =x-y
CMR:x- 4xy/x+y +y):(x/x+y - y/y-x - 2xy/x^2-y^2)=x-y
Chứng minh (x+y)(x+y)=x^2+2xy+y^2 b(x-y)(x-y)=x^2-2xy+y^2 c(x-z)(x+z)=x^2-z^2
\(\left(x+y\right)\left(x+y\right)=x^2+xy+xy+y^2=x^2+2xy+y^2\)
\(\left(x-y\right)\left(x-y\right)=x^2-xy-xy+y^2=x^2-2xy+y^2\)
\(\left(x-z\right)\left(x+z\right)=x^2+xz-xz-z^2=x^2-z^2\)
Q(x)= 2xy2+3x2y-4xy-x2y2
P(x)= 4x2y2-2xy2+x2y-15+2xy
a) Tính P(x)+Q(x) và P(x)-Q(x)
b) Chứng minh x=0 là nghiệm của đa thức Q(x) và không phải là nghiệm của P(x)
\(a)P\left(x\right)+Q\left(x\right)=4x^2y-2xy^2+x^2y-15+2xy+\left(2xy^2+3x^2y-4xy-x^2y^2\right)\)
\(=4x^2y^2-2xy^2+x^2y-15+2xy+2xy^2+3x^2y-4xy-x^2y^2\)
\(=\left(4x^2y^2-x^2y^2\right)+\left(-2xy^2+2xy^2\right)+\left(x^2y+3x^2y\right)-15+\left(2xy-4xy\right)\)
\(=3x^2y^2+4x^2y-2xy-15\)
\(P\left(x\right)-Q\left(x\right)=4x^2y^2-2xy^2+x^2y-15+2xy-\left(2xy^2+3x^2y-4xy-x^2y^2\right)\)
\(=4x^2y^2-2xy^2+x^2y-15+2xy-2xy^2-3x^2y+4xy+x^2y^2\)
\(=\left(4x^2y+x^2y^2\right)+\left(-2xy^2-2xy^2\right)+\left(x^2y-3x^2y\right)-15+\left(2xy+4xy\right)\)
\(=5x^2y-4xy^2-2x^2y+6xy-15\)
Chứng minh các biểu thức sau luôn nhận giá trị dương
A(x,y) = x^2 - 2xy + y^2 + 4x^2 - 4xy + 3
B(x) = 3x^2 - 5x + 6
\(A\left(x,y\right)=x^2-2xy+y^2+4x^2-4xy+3\)
\(A\left(x,y\right)=5x^2-6xy+y^2+3\)
\(A\left(x,y\right)=2x^2+3x^2-6xy+y^2+3\)
\(A\left(x,y\right)=2x^2+\left(3x-y\right)^2+3\)
Ta thấy: \(2x^2\ge0\forall x\)
\(\left(3x-y\right)^2\ge0\forall x,y\)
\(\Rightarrow2x^2+\left(3x-y\right)^2+3\ge0\forall x,y\)
KL: Vậy biểu thức A luôn nhận giá trị dương.
\(B\left(x\right)=3x^2-5x+6\)
\(B\left(x\right)=3x^2-5x+\frac{5}{6}+\frac{31}{6}\)
\(B\left(x\right)=3x^2-5x+\left(\frac{5}{6}\right)^2+\frac{5}{36}+\frac{31}{6}\)
\(B\left(x\right)=\left(3x-\frac{5}{6}\right)^2+\frac{5}{36}+\frac{31}{6}\)
Ta thấy: \(\left(3x-\frac{5}{6}\right)^2\ge0\forall x\)
\(\Rightarrow\left(3x-\frac{5}{6}\right)^2+\frac{5}{36}+\frac{31}{6}\ge0\forall x\)
vậy biểu thức B luôn nhận giá trị dương.
Chứng minh biểu thức ko phụ thuộc vào x:
a. A = (3x - 2)(9x² + 6x + 4) – 3(9x³ – 1)
b. B = (2x + y)(4x² – 2xy + y²) + (2x - y)(x² + 4xy + y^2) – 16x³.
rút gọn bt {[1/(x^2+2xy+y^2)]-[1/(x^2-y^2)]}/(4xy/y^2-x^2)
\(\dfrac{1}{x^2+2xy+y^2}-\dfrac{1}{x^2-y^2}:\dfrac{4xy}{y^2-x^2}\) \(\left(x,y\ne0;x\ne\pm y\right)\)
\(=\dfrac{1}{\left(x+y\right)^2}+\dfrac{1}{y^2-x^2}.\dfrac{y^2-x^2}{4xy}\)
\(=\dfrac{1}{x^2+2xy+y^2}+\dfrac{1}{4xy}\)
\(=\dfrac{6xy+x^2+y^2}{4xy\left(x+y\right)^2}\)
Ta có: \(\dfrac{1}{x^2+2xy+y^2}-\dfrac{1}{x^2-y^2}:\dfrac{4xy}{y^2-x^2}\)
\(=\dfrac{1}{\left(x+y\right)^2}+\dfrac{1}{\left(x-y\right)\left(x+y\right)}\cdot\dfrac{\left(x+y\right)\left(x-y\right)}{4xy}\)
\(=\dfrac{1}{\left(x+y\right)^2}+\dfrac{1}{4xy}\)
\(=\dfrac{4xy}{4xy\left(x+y\right)^2}+\dfrac{x^2+2xy+y^2}{4xy\left(x+y\right)^2}\)
\(=\dfrac{x^2+6xy+y^2}{4xy\left(x+y\right)^2}\)
Rút gọn : \(\left(x+y-\frac{4xy}{x+y}\right):\left(\frac{x}{x+y}-\frac{y}{y-x}-\frac{2xy}{x^2-y^2}\right)\)
(\(\frac{\left(x+y\right)^2}{x+y}\) -\(\frac{4xy}{x+y}\) ):\(\frac{\left(x-y\right)^2}{\left(x+y\right)\left(x-y\right)}\)
\(\frac{\left(x-y\right)^2}{x+y}\).\(\frac{x+y}{x-y}\) =x-y
Rút gọn : \(\left(x-\dfrac{4xy}{x+y}+y\right):\left(\dfrac{x}{x+y}-\dfrac{y}{y-x}-\dfrac{2xy}{x^2-y^2}\right)\)
\(\left(x-\dfrac{4xy}{x+y}+y\right):\left(\dfrac{x}{x+y}-\dfrac{y}{y-x}-\dfrac{2xy}{x^2-y^2}\right)\)
\(=\left(\dfrac{x\left(x+y\right)-4xy+y\left(x+y\right)}{x+y}\right):\left(\dfrac{x\left(x-y\right)+y\left(x+y\right)-2xy}{x^2-y^2}\right)\)
\(=\dfrac{\left(x-y\right)^2}{x+y}:\dfrac{\left(x-y\right)^2}{x^2-y^2}=\dfrac{\left(x-y\right)^2}{x+y}.\dfrac{\left(x-y\right)\left(x+y\right)}{\left(x-y\right)^2}=x-y\)
chứng minh đẳng thức
[(3/x-y+3x/x^2-y^2)]: 2x+y/x^2+2xy+y^2]x-y/3=x+y